Fatt I, Giasson C J, Mueller T D
School of Optometry, University of California, Berkeley 94720-2020, USA.
Biophys J. 1998 Jan;74(1):475-86. doi: 10.1016/S0006-3495(98)77805-1.
Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer's solution in equilibrium with a CO2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37 degrees C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5 x 10(-6) cm2/s in the stroma and 0.4 x 10(-6) cm2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma, D(H+) = 11.8 x 10(-6) cm2/s; D(HCO3-) = 1.5 x 10(-6) cm2/s; and 2) epithelium, D(H+) = 1.9 x 10(-6) cm2/s; D(HCO3-) = 0.22 x 10(-6) cm2/s.
离子和非离子物质在多层组织中的扩散在这些组织发生的代谢过程中起着重要作用。为了建立这些扩散过程的数学模型,我们选择了哺乳动物角膜内碳酸氢根离子对的扩散作为例子。这一选择是基于该系统实验数据的可得性。当角膜前上皮表面的条件发生变化,而后表面持续用与二氧化碳气体空气混合物平衡的林格氏溶液冲洗时,根据基质中观察到的pH变化来计算角膜基质和上皮中碳酸氢根离子对的扩散系数。将实验结果与作为双层扩散系统的角膜数学模型相匹配,在37摄氏度时,基质中碳酸氢根离子对的扩散系数为2.5×10⁻⁶ cm²/s,上皮中为0.4×10⁻⁶ cm²/s。将能斯特 - 爱因斯坦方程应用于这些数据,得出两层中的以下扩散系数:1)基质,D(H⁺)=11.8×10⁻⁶ cm²/s;D(HCO₃⁻)=1.5×10⁻⁶ cm²/s;2)上皮,D(H⁺)=1.9×10⁻⁶ cm²/s;D(HCO₃⁻)=0.22×10⁻⁶ cm²/s。