Suppr超能文献

Design and calibration of unicapillary pneumotachographs.

作者信息

Giannella-Neto A, Bellido C, Barbosa R B, Melo M F

机构信息

Biomedical Engineering Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Brazil.

出版信息

J Appl Physiol (1985). 1998 Jan;84(1):335-43. doi: 10.1152/jappl.1998.84.1.335.

Abstract

This study presents a method for design and calibration of unicapillary pneumotachographs for small-animal experiments. The design, based on Poiseuille's law, defines a set of internal radius and length values that allows for laminar flow, measurable pressure differences, and minimal interference with animal's respiratory mechanics and gas exchange. A third-order polynomial calibration (Pol) of the pressure-flow relationship was employed and compared with linear calibration (Lin). Tests were done for conditions of ambient pressure (Pam) and positive pressure (Ppos) ventilation at different flow ranges. A physical model designed to match normal and low compliance in rats was used. At normal compliance, Pol provided lower errors than Lin for mixed (1-12 ml/s), mean (4-10 ml/s), and high (8-12 ml/s) flow rate calibrations for both Pam and Ppos inspiratory tests (P < 0.001 for all conditions) and expiratory tests (P < 0.001 for all conditions). At low compliance, they differed significantly with 8.6 +/- 4.1% underestimation when Lin at Pam was used in Ppos tests. Ppos calibration, preferably in combination with Pol, should be used in this case to minimize errors (Pol = 0.8 +/- 0.5%, Lin = 6.5 +/- 4.0%, P < 0.0005). Nonlinear calibration may be useful for improvement of flow and volume measurements in small animals during both Pam and Ppos ventilation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验