Border W A, Noble N A
Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, 84132, USA.
Hypertension. 1998 Jan;31(1 Pt 2):181-8. doi: 10.1161/01.hyp.31.1.181.
Overproduction of transforming growth factor-beta clearly underlies tissue fibrosis in numerous experimental and human diseases. Transforming growth factor-beta's powerful fibrogenic action results from simultaneous stimulation of matrix protein synthesis, inhibition of matrix degradation, and enhanced integrin expression that facilitates matrix assembly. In animals, overexpression of transforming growth factor-beta by intravenous injection, transient gene transfer, or transgene insertion has shown that the kidney is highly susceptible to rapid fibrosis. The same seems true in human disease, where excessive transforming growth factor-beta has been demonstrated in glomerulonephritis, diabetic nephropathy, and hypertensive glomerular injury. A possible explanation for the kidney's particular susceptibility to fibrosis may be the recent discovery of biologically complex interactions between the renin-angiotensin system and transforming growth factor-beta. Alterations in glomerular hemodynamics can activate both the renin-angiotensin system and transforming growth factor-beta. Components of the renin-angiotensin system act to further stimulate production of transforming growth factor-beta and plasminogen activator inhibitor leading to rapid matrix accumulation. In volume depletion, transforming growth factor-beta is released from juxtaglomerular cells and may act synergistically with angiotensin II to accentuate vasoconstriction and acute renal failure. Interaction of the renin-angiotensin system and transforming growth factor-beta has important clinical implications. The protective effect of inhibition of the renin-angiotensin system in experimental and human kidney diseases correlates closely with the suppression of transforming growth factor-beta production. This suggests that transforming growth factor-beta, in addition to blood pressure, should be a therapeutic target. Higher doses or different combinations of drugs that block the renin-angiotensin system or entirely new drug strategies may be needed to achieve a greater antifibrotic effect.
在众多实验性疾病和人类疾病中,转化生长因子-β的过度产生显然是组织纤维化的基础。转化生长因子-β强大的促纤维化作用源于其对基质蛋白合成的同时刺激、对基质降解的抑制以及促进基质组装的整合素表达增强。在动物中,通过静脉注射、瞬时基因转移或转基因插入使转化生长因子-β过表达已表明,肾脏对快速纤维化高度敏感。在人类疾病中似乎也是如此,在肾小球肾炎、糖尿病肾病和高血压性肾小球损伤中已证实存在过量的转化生长因子-β。肾脏对纤维化特别敏感的一个可能解释可能是最近发现的肾素-血管紧张素系统与转化生长因子-β之间生物学上复杂的相互作用。肾小球血流动力学的改变可激活肾素-血管紧张素系统和转化生长因子-β。肾素-血管紧张素系统的成分进一步刺激转化生长因子-β和纤溶酶原激活物抑制剂的产生,导致基质快速积累。在容量耗竭时,转化生长因子-β从肾小球旁细胞释放,可能与血管紧张素II协同作用,加重血管收缩和急性肾衰竭。肾素-血管紧张素系统与转化生长因子-β的相互作用具有重要的临床意义。在实验性和人类肾脏疾病中,抑制肾素-血管紧张素系统的保护作用与转化生长因子-β产生的抑制密切相关。这表明,除了血压之外,转化生长因子-β也应成为一个治疗靶点。可能需要更高剂量或不同组合的阻断肾素-血管紧张素系统的药物或全新的药物策略来实现更大的抗纤维化效果。