Sainte-Marie J, Lafont V, Pécheur E I, Favero J, Philippot J R, Bienvenüe A
UMR 5539 CNRS, Université Montpellier II, France.
Eur J Biochem. 1997 Dec 15;250(3):689-97. doi: 10.1111/j.1432-1033.1997.00689.x.
Transferrin binding to its receptor modulates transferrin receptor (Tf-R) recycling rates in several cells [Klausner, R. D., Van Renswoude, J., Ashwell, G., Kempf, C., Schechter, A., Dean, A. & Bridges, K. R. (1983a) J. Biol. Chem. 258, 4715-4724; Gironès, N. & Davis, R. J. (1989) Biochem. J. 264, 35-46; Sainte-Marie, J., Vidal, M., Bette-Bobillo, P., Philippot, J. R. & Bienvenüe, A. (1991) Eur. J. Biochem. 201, 295-302]. To delineate the mechanism of this regulation, we hypothesized that the binding of the ligand to its receptor could lead to activation of several second-messenger pathways, which may redundantly stimulate recycling of the receptor. The effects of different regulators of Ca2+ flux or concentrations were investigated on the Tf-R-recycling pathway; these studies were carried out in two cell types. Perhexiline, a calcium antagonist, slowed receptor recycling in comparison with the control by more than 80% in L2C cells and by 60% in Jurkat cells (B and T lymphoblasts, respectively) but did not affect their internalization rate. Perhexiline thus trapped considerable amounts of Tf-R in the internal compartment. Ca2+ chelators, such as EGTA or 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid, and a Ca2+-channel inhibitor (Ni2+) decreased drastically the recycling rate of Tf-R. Tf-R recycling was shown to be slowed by a calmodulin antagonist. Conversely, artificial elevation of free internal Ca2+ in L2C cells, using lectin, accelerated the recycling rate. These results suggest that the intracellular Ca2+ concentration plays an important role in the outward flow of transferrin receptors. Consequently, we examined the role of transferrin in internal free Ca2+ regulation. The addition of transferrin or anti-(Tf-R) Ig specifically elicited a rise in [Ca2+], as demonstrated by inefficacy of apotransferrin or irrelevant antibodies. These results suggest that Ca2+ is a regulator of Tf-R recycling and that Tf-R seems to function as a signal-transduction molecule (perhaps in conjunction with other membrane proteins) rather than merely as an endocytic receptor.
转铁蛋白与其受体的结合可调节多种细胞中转铁蛋白受体(Tf-R)的循环利用速率[克劳斯纳,R.D.,范伦斯沃德,J.,阿什韦尔,G.,肯普夫,C.,谢克特,A.,迪恩,A.和布里奇斯,K.R.(1983a)《生物化学杂志》258,4715 - 4724;希罗纳莱斯,N.和戴维斯,R.J.(1989)《生物化学杂志》264,35 - 46;圣玛丽,J.,维达尔,M.,贝特 - 博比洛,P.,菲利普托,J.R.和比安韦努,A.(1991)《欧洲生物化学杂志》201,295 - 302]。为了阐明这种调节机制,我们推测配体与其受体的结合可能导致几种第二信使途径的激活,这些途径可能会冗余刺激受体的循环利用。研究了不同的Ca²⁺通量或浓度调节剂对Tf-R循环利用途径的影响;这些研究在两种细胞类型中进行。钙拮抗剂哌克昔林与对照组相比,使L2C细胞(分别为B和T淋巴母细胞)中的受体循环利用减慢了80%以上,使Jurkat细胞中的减慢了60%,但不影响它们的内化速率。因此,哌克昔林使大量的Tf-R被困在内质区室中。Ca²⁺螯合剂,如乙二醇双四乙酸(EGTA)或1,2 - 双(2 - 氨基苯氧基)乙烷 - N,N,N,N'-四乙酸,以及一种Ca²⁺通道抑制剂(Ni²⁺)显著降低了Tf-R的循环利用速率。钙调蛋白拮抗剂显示可减慢Tf-R的循环利用。相反,在L2C细胞中使用凝集素人为升高细胞内游离Ca²⁺可加速循环利用速率。这些结果表明细胞内Ca²⁺浓度在转铁蛋白受体的外流中起重要作用。因此,我们研究了转铁蛋白在细胞内游离Ca²⁺调节中的作用。如脱铁转铁蛋白或无关抗体无效所证明的,添加转铁蛋白或抗(Tf-R)Ig可特异性引起[Ca²⁺]升高。这些结果表明Ca²⁺是Tf-R循环利用的调节剂,并且Tf-R似乎作为一种信号转导分子(可能与其他膜蛋白一起)发挥作用,而不仅仅是作为一种内吞受体。