Tsai A l, Palmer G, Xiao G, Swinney D C, Kulmacz R J
Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
J Biol Chem. 1998 Feb 13;273(7):3888-94. doi: 10.1074/jbc.273.7.3888.
A tyrosyl radical generated in the peroxidase cycle of prostaglandin H synthase-1 (PGHS-1) can serve as the initial oxidant for arachidonic acid (AA) in the cyclooxygenase reaction. Peroxides also induce radical formation in prostaglandin H synthase-2 (PGHS-2) and in PGHS-1 reconstituted with mangano protoporphyrin IX (MnPGHS-1), but the EPR spectra of these radicals are distinct from the initial tyrosyl radical in PGHS-1. We have examined the ability of the radicals in PGHS-2 and MnPGHS-1 to oxidize AA, using single-turnover EPR studies. One wide singlet tyrosyl radical with an overall EPR line width of 29-31 gauss (G) was generated by reaction of PGHS-2 with ethyl hydroperoxide. Anaerobic addition of AA to PGHS-2 immediately after formation of this radical led to its disappearance and emergence of an AA radical (AA.) with a 7-line EPR, substantiated by experiments using octadeuterated AA. Subsequent addition of oxygen resulted in regeneration of the tyrosyl radical. In contrast, the peroxide-generated radical (a 21G narrow singlet) in a Y371F PGHS-2 mutant lacking cyclooxygenase activity failed to react with AA. The peroxide-generated radical in MnPGHS-1 exhibited a line width of 36-38G, but was also able to convert AA to an AA. with an EPR spectrum similar to that found with PGHS-2. These results indicate that the peroxide-generated radicals in PGHS-2 and MnPGHS-1 can each serve as immediate oxidants of AA to form the same carbon-centered fatty acid radical that subsequently reacts with oxygen to form a hydroperoxide. The EPR data for the AA-derived radical formed by PGHS-2 and MnPGHS-1 could be accounted for by a planar pentadienyl radical with two strongly interacting beta-protons at C10 of AA. These results support a functional role for peroxide-generated radicals in cyclooxygenase catalysis by both PGHS isoforms and provide important structural characterization of the carbon-centered AA..
在前列腺素H合酶-1(PGHS-1)的过氧化物酶循环中产生的酪氨酸自由基可作为环氧化酶反应中花生四烯酸(AA)的初始氧化剂。过氧化物也会在前列腺素H合酶-2(PGHS-2)和用锰原卟啉IX重组的PGHS-1(MnPGHS-1)中诱导自由基形成,但这些自由基的电子顺磁共振(EPR)光谱与PGHS-1中的初始酪氨酸自由基不同。我们使用单周转EPR研究,考察了PGHS-2和MnPGHS-1中的自由基氧化AA的能力。PGHS-2与氢过氧化乙酯反应产生了一个整体EPR线宽为29 - 31高斯(G)的宽单重态酪氨酸自由基。在该自由基形成后立即向PGHS-2厌氧添加AA,导致其消失并出现具有7线EPR的AA自由基(AA·),使用十八氘代AA的实验证实了这一点。随后添加氧气导致酪氨酸自由基再生。相比之下,缺乏环氧化酶活性的Y371F PGHS-2突变体中过氧化物产生的自由基(一个21G窄单重态)未能与AA反应。MnPGHS-1中过氧化物产生的自由基线宽为36 - 38G,但也能够将AA转化为具有与PGHS-2中相似EPR光谱的AA·。这些结果表明,PGHS-2和MnPGHS-1中过氧化物产生的自由基均可作为AA的直接氧化剂,形成相同的以碳为中心的脂肪酸自由基,该自由基随后与氧气反应形成氢过氧化物。PGHS-2和MnPGHS-1形成的源自AA的自由基的EPR数据可以由在AA的C10处具有两个强相互作用的β-质子的平面戊二烯基自由基来解释。这些结果支持了过氧化物产生的自由基在两种PGHS同工型的环氧化酶催化中的功能作用,并提供了以碳为中心的AA·的重要结构特征。