Suppr超能文献

通过免疫尿液检测评估卡介苗膀胱灌注治疗浅表性膀胱癌的预后:统计学加权综合征分析

Prognosis of intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer by immunological urinary measurements: statistically weighted syndrome analysis.

作者信息

Jackson A M, Ivshina A V, Senko O, Kuznetsova A, Sundan A, O'Donnell M A, Clinton S, Alexandroff A B, Selby P J, James K, Kuznetsov V A

机构信息

ICRF Cancer Medicine Research Unit, University of Leeds, United Kingdom.

出版信息

J Urol. 1998 Mar;159(3):1054-63.

PMID:9474231
Abstract

PURPOSE

The goal of this research was to discover new biological indicators in urine which could be used for short-term prognosis of local Bacillus Calmette-Guerin (BCG) therapy outcome in patients with superficial bladder cancer.

PATIENTS AND METHODS

We measured and statistically evaluated soluble immunological molecules in urine from bladder cancer patients (n = 34) receiving BCG intravesically. Urine was collected following each of 6 weekly treatments, processed and assayed. The data base included measurements of interleukin-1 (IL-2, IL-4, IL-6, IL-10, IL-12, soluble intercellular adhesion molecule-1 (sICAM-1), tumour necrosis factor-alpha (TNF alpha), soluble CD14 (sCD14), interferon-gamma (IFN gamma), GM-CSF, volume of urine and its pH. The clinical response was evaluated by urine histology and random quadrant biopsy 3 months after the start of therapy. Patients were divided into 2 groups, with good and poor therapeutic effect. The initial complete response rate was 62% (21/34). The data base was analyzed using traditional multivariate statistical methods and a pattern recognition method which deals with combinatorial-statistical analysis (statistically weighted syndromes (SWS) method) of the gradated features. The SWS method is capable of identifying robust patterns in small "fuzzy" sets with high dimensional objects and some missing values.

RESULTS

Only one parameter gave significant differences at p < 0.05, GM-CSF at instillation 6. Repeated measurement analysis of variance, backward stepwise multiple logistic regression and linear discriminant analysis failed to show any significance. However, significant differences in the structure of correlation between features in the groups with and without therapeutic effect were observed and four highly informative variables (the masses of sICAM-1, TNF alpha, sCD14 and pH) relating to 5th-6th installations were selected by SWS. These features provided accurate individual prediction of therapeutic outcome for all our patients. Cross-validation analysis and computer simulation showed the statistically significant stability of the prediction.

CONCLUSION

We have selected a set of urinary variables that could be considered as a perspective combination of indicators (syndromes) of outcome of pre-operation BCG therapy of patients with superficial bladder cancer. A larger patient database will provide testing and evaluation of the biological and clinical significance of selected features. The computational syndrome-disease approach should be applicable for the solution of decision-making problems for management of cancer.

摘要

目的

本研究的目的是在尿液中发现新的生物学指标,用于预测浅表性膀胱癌患者局部卡介苗(BCG)治疗的短期疗效。

患者和方法

我们对34例接受膀胱内卡介苗治疗的膀胱癌患者的尿液中的可溶性免疫分子进行了测量和统计学评估。在每周6次治疗中的每次治疗后收集尿液,进行处理和检测。数据库包括白细胞介素-1(IL-2、IL-4、IL-6、IL-10、IL-12)、可溶性细胞间黏附分子-1(sICAM-1)、肿瘤坏死因子-α(TNFα)、可溶性CD14(sCD14)、干扰素-γ(IFNγ)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、尿量及其pH值的测量数据。治疗开始3个月后,通过尿液组织学和随机象限活检评估临床反应。患者分为治疗效果良好和不佳两组。初始完全缓解率为62%(21/34)。使用传统的多变量统计方法和一种处理分级特征的组合统计分析(统计加权综合征(SWS)方法)的模式识别方法对数据库进行分析。SWS方法能够在具有高维对象和一些缺失值的小“模糊”集中识别稳健模式。

结果

只有一个参数在p<0.05时有显著差异,即第6次灌注时的GM-CSF。重复测量方差分析、向后逐步多元逻辑回归和线性判别分析均未显示任何显著性。然而,观察到有治疗效果和无治疗效果的组之间特征相关性结构存在显著差异,SWS选择了与第5-6次灌注相关的四个信息丰富的变量(sICAM-1、TNFα、sCD14的质量和pH值)。这些特征为所有患者提供了准确的个体治疗效果预测。交叉验证分析和计算机模拟显示了预测的统计学显著稳定性。

结论

我们选择了一组尿液变量,可将其视为浅表性膀胱癌患者术前BCG治疗结果的一组有前景的指标(综合征)组合。更大的患者数据库将对所选特征的生物学和临床意义进行测试和评估。计算综合征-疾病方法应适用于解决癌症管理中的决策问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验