Mason R W, Sol-Church K, Abrahamson M
Division of Developmental Biology, Nemours Research Programs, P.O. Box 269, Wilmington, DE 19899, USA.
Biochem J. 1998 Mar 1;330 ( Pt 2)(Pt 2):833-8. doi: 10.1042/bj3300833.
We used site-directed mutagenesis to alter the specificity of human cystatin C, an inhibitor with a broad reactivity against cysteine proteinases. Nine cystatin C variants containing amino acid substitutions in the N-terminal (L9W, V10W, V10F and V10R) and/or the C-terminal (W106G) enzyme-binding regions were designed and produced in Escherichia coli. It was discovered that the inhibition profile of the cystatin could be altered by changing residues 9 and 10, which are proposed to bind in the S3 and S2 substrate-binding pockets respectively of the enzymes. All of the variants with substitutions in the N-terminal segment displayed decreased binding to cathepsins B and H, indicating that the S3 and S2 pockets of these enzymes cannot easily accommodate large aromatic residues. The introduction of a charged residue into S2 (variant V10R) created a more specific inhibitor to distinguish cathepsin B from cathepsin H. Cathepsin L showed a preference for larger aromatic residues in S2. In contrast, cathepsin S preferred phenylalanine to valine in S2, but bound less tightly to the V10W cystatin variant. The latter variant proved to be valuable for discriminating between cathepsin L and cathepsin S (Ki 2.4 and 190 pM respectively). The equilibrium dissociation constant of the complex between cathepsin L and variant L9W/W106G showed little difference in affinity from that of the cathepsin L complex with the singly substituted W106G variant. In contrast, the L9W/W106G variant displayed increased specificity for cathepsin S with a Ki of 10 pM. Our results clearly indicate differences in the specificity of interaction between the N-terminal region of cystatin C and cathepsins B, H, L and S, and that, although cystatin C has evolved to be a good inhibitor of all of the mammalian cysteine proteinases, more specific inhibitors of the individual enzymes can be engineered.
我们利用定点诱变技术改变人胱抑素C的特异性,胱抑素C是一种对半胱氨酸蛋白酶具有广泛反应活性的抑制剂。设计并在大肠杆菌中产生了9种在N端(L9W、V10W、V10F和V10R)和/或C端(W106G)酶结合区域含有氨基酸替换的胱抑素C变体。研究发现,通过改变第9位和第10位残基可以改变胱抑素的抑制谱,这两个残基分别被认为结合在酶的S3和S2底物结合口袋中。所有在N端片段有替换的变体与组织蛋白酶B和H的结合都减少,这表明这些酶的S3和S2口袋不易容纳大的芳香族残基。在S2中引入一个带电荷的残基(变体V10R)产生了一种更具特异性的抑制剂,可区分组织蛋白酶B和组织蛋白酶H。组织蛋白酶L在S2中更倾向于较大的芳香族残基。相比之下,组织蛋白酶S在S2中更喜欢苯丙氨酸而非缬氨酸,但与V10W胱抑素变体的结合较弱。后一种变体被证明对于区分组织蛋白酶L和组织蛋白酶S很有价值(Ki分别为2.4和190 pM)。组织蛋白酶L与变体L9W/W106G之间复合物的平衡解离常数与组织蛋白酶L与单取代的W106G变体复合物的亲和力差异不大。相比之下,L9W/W106G变体对组织蛋白酶S的特异性增加,Ki为10 pM。我们的结果清楚地表明胱抑素C的N端区域与组织蛋白酶B、H、L和S之间相互作用的特异性存在差异,并且,尽管胱抑素C已进化成为所有哺乳动物半胱氨酸蛋白酶的良好抑制剂,但可以设计出针对个别酶的更具特异性的抑制剂。