Suppr超能文献

辛德毕斯病毒RNA聚合酶N端对芳香族氨基酸或组氨酸的需求。

Requirement for an aromatic amino acid or histidine at the N terminus of Sindbis virus RNA polymerase.

作者信息

Shirako Y, Strauss J H

机构信息

Division of Biology, California Institute of Technology, Pasadena 91125, USA.

出版信息

J Virol. 1998 Mar;72(3):2310-5. doi: 10.1128/JVI.72.3.2310-2315.1998.

Abstract

The N terminal amino acid of nonstructural protein nsP4, the viral RNA polymerase, is a tyrosine in all sequenced alphaviruses; this is a destabilizing amino acid for the N-end rule pathway and results in rapid degradation of nsP4 produced in infected cells or in reticulocyte lysates. We have constructed 11 mutants of Sindbis virus bearing Phe, Ala, Thr, Cys, Leu, Met, Asn, Gln, Glu, Arg, or Pro at the N terminus of nsP4. Translation of RNAs in reticulocyte lysates showed that cleavage at the nsP3/nsP4 site occurred efficiently for all mutants except for Glu-nsP4, which was cleaved inefficiently, and Pro-nsP4, which was not detectably cleaved, and that Tyr, Cys, Leu, Arg, and Phe destabilized nsP4 but Ala, Met, Thr, Asn, Gln, and Glu stabilized nsP4 to various extents. The viability of the mutants was examined by transfection of chicken cells at 30 or 40 degrees C. The Phe-nsP4 mutant formed large plaques at both temperatures. The Met-nsP4 mutant was also viable but formed small plaques at 30 degrees C and minute plaques at 40 degrees C. The remaining mutants did not form plaques at either temperature. However, after prolonged incubation at 30 degrees C, all the mutants except Glu-nsP4 and Pro-nsP4 produced viable viruses. In the case of Cys-, Leu-, Asn-, Gln-, or Arg-nsP4, revertants that were indistinguishable in plaque phenotype from the wild-type virus arose by same-site reversion to Tyr, Trp, Phe, or His by a single nucleotide substitution in the original mutant codon. Viable viruses also arose from the Ala-, Leu-, Cys-, Thr-, Asn-, Gln-, and Arg-nsP4 mutants that retained the original mutations at the N terminus of nsP4, but these viruses formed smaller plaques than the wild-type virus and many were temperature sensitive. Our results indicate that only nsP4s bearing N-terminal Tyr, Phe, Trp, or His have wild-type or near-wild-type activity for RNA replication and that rapid degradation of nsP4 is not a prerequisite for its function. nsP4s bearing other N-terminal residues, with the exception of Met-nsP4, have only very low or negligible activity, so that no detectable infectious virus can be produced. However, suppressor mutations can arise that enable most such nsP4s to regain significant but still suboptimal activity.

摘要

非结构蛋白nsP4(病毒RNA聚合酶)的N端氨基酸在所有已测序的甲病毒中均为酪氨酸;对于N端规则途径而言,这是一种不稳定氨基酸,会导致感染细胞或网织红细胞裂解物中产生的nsP4迅速降解。我们构建了11种辛德毕斯病毒突变体,其nsP4的N端分别为苯丙氨酸、丙氨酸、苏氨酸、半胱氨酸、亮氨酸、甲硫氨酸、天冬酰胺、谷氨酰胺、谷氨酸、精氨酸或脯氨酸。网织红细胞裂解物中RNA的翻译结果表明,除了裂解效率低的谷氨酸-nsP4和未检测到裂解的脯氨酸-nsP4外,所有突变体在nsP3/nsP4位点的裂解均有效,并且酪氨酸、半胱氨酸、亮氨酸、精氨酸和苯丙氨酸会使nsP4不稳定,而丙氨酸、甲硫氨酸、苏氨酸、天冬酰胺、谷氨酰胺和谷氨酸则在不同程度上使nsP4稳定。通过在30或40℃转染鸡细胞来检测突变体的活力。苯丙氨酸-nsP4突变体在两个温度下均形成大的噬斑。甲硫氨酸-nsP4突变体也具有活力,但在30℃时形成小噬斑,在40℃时形成微小噬斑。其余突变体在两个温度下均未形成噬斑。然而,在30℃长时间孵育后,除了谷氨酸-nsP4和脯氨酸-nsP4外,所有突变体均产生了有活力的病毒。在半胱氨酸-、亮氨酸-、天冬酰胺-、谷氨酰胺-或精氨酸-nsP4的情况下,噬斑表型与野生型病毒无法区分的回复突变体通过原始突变密码子中的单个核苷酸取代,在同一位点回复为酪氨酸、色氨酸、苯丙氨酸或组氨酸而产生。有活力的病毒也源自甲硫氨酸-、亮氨酸-、半胱氨酸-、苏氨酸-、天冬酰胺-、谷氨酰胺-和精氨酸-nsP4突变体,这些突变体在nsP4的N端保留了原始突变,但这些病毒形成的噬斑比野生型病毒小,并且许多对温度敏感。我们的结果表明,只有N端为酪氨酸、苯丙氨酸、色氨酸或组氨酸的nsP4对RNA复制具有野生型或接近野生型的活性,并且nsP4的快速降解不是其功能的先决条件。除甲硫氨酸-nsP4外,带有其他N端残基的nsP4只有非常低或可忽略不计的活性,因此无法产生可检测到的感染性病毒。然而,可以出现抑制突变,使大多数此类nsP4重新获得显著但仍次优的活性。

相似文献

1
Requirement for an aromatic amino acid or histidine at the N terminus of Sindbis virus RNA polymerase.
J Virol. 1998 Mar;72(3):2310-5. doi: 10.1128/JVI.72.3.2310-2315.1998.
3
Sindbis virus RNA polymerase is degraded by the N-end rule pathway.
Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8967-71. doi: 10.1073/pnas.88.20.8967.
4
Modification of Asn374 of nsP1 suppresses a Sindbis virus nsP4 minus-strand polymerase mutant.
J Virol. 2002 Sep;76(17):8641-9. doi: 10.1128/jvi.76.17.8641-8649.2002.
6
Alphavirus minus-strand RNA synthesis: identification of a role for Arg183 of the nsP4 polymerase.
J Virol. 2002 Sep;76(17):8632-40. doi: 10.1128/jvi.76.17.8632-8640.2002.

引用本文的文献

1
nsP4 Is a Major Determinant of Alphavirus Replicase Activity and Template Selectivity.
J Virol. 2021 Sep 27;95(20):e0035521. doi: 10.1128/JVI.00355-21. Epub 2021 Jul 28.
2
Bortezomib inhibits chikungunya virus replication by interfering with viral protein synthesis.
PLoS Negl Trop Dis. 2020 May 29;14(5):e0008336. doi: 10.1371/journal.pntd.0008336. eCollection 2020 May.
3
Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development.
Viruses. 2018 Feb 9;10(2):71. doi: 10.3390/v10020071.
4
Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein.
PLoS One. 2016 Mar 10;11(3):e0151616. doi: 10.1371/journal.pone.0151616. eCollection 2016.
5
Alphavirus RNA synthesis and non-structural protein functions.
J Gen Virol. 2015 Sep;96(9):2483-2500. doi: 10.1099/jgv.0.000249. Epub 2015 Jul 24.
7
Replication of alphaviruses: a review on the entry process of alphaviruses into cells.
Adv Virol. 2011;2011:249640. doi: 10.1155/2011/249640. Epub 2011 Jul 2.
8
Requirement for the amino-terminal domain of sindbis virus nsP4 during virus infection.
J Virol. 2011 Apr;85(7):3449-60. doi: 10.1128/JVI.02058-10. Epub 2011 Jan 19.
9
A structural and functional perspective of alphavirus replication and assembly.
Future Microbiol. 2009 Sep;4(7):837-56. doi: 10.2217/fmb.09.59.
10
Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility.
Vet Res. 2009 Mar-Apr;40(2):43. doi: 10.1051/vetres/2009026. Epub 2009 May 1.

本文引用的文献

5
The alphaviruses: gene expression, replication, and evolution.
Microbiol Rev. 1994 Sep;58(3):491-562. doi: 10.1128/mr.58.3.491-562.1994.
7
Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon.
Proc Natl Acad Sci U S A. 1983 Sep;80(17):5271-5. doi: 10.1073/pnas.80.17.5271.
8
A rapid boiling method for the preparation of bacterial plasmids.
Anal Biochem. 1981 Jun;114(1):193-7. doi: 10.1016/0003-2697(81)90473-5.
9
Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses.
Nucleic Acids Res. 1984 Sep 25;12(18):7269-82. doi: 10.1093/nar/12.18.7269.
10
A simple and very efficient method for generating cDNA libraries.
Gene. 1983 Nov;25(2-3):263-9. doi: 10.1016/0378-1119(83)90230-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验