Fagotto F, Glück U, Gumbiner B M
Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York 10021, USA.
Curr Biol. 1998 Feb 12;8(4):181-90. doi: 10.1016/s0960-9822(98)70082-x.
Control of the nuclear localization of specific proteins is an important mechanism for regulating many signal transduction pathways. Upon activation of the Wnt signaling pathway, beta-catenin localizes into the nucleus and interacts with TCF/LEF-1 (T-cell factor/lymphocyte enhancer factor-1) transcription factors, triggering activation of downstream genes. The role of regulated nuclear localization in beta-catenin signaling is still unclear. Beta-catenin has no nuclear localization sequence (NLS). Although it has been reported that beta-catenin can piggyback into the nucleus by binding to TCF/LEF-1, there is evidence that its import is independent of TCF/LEF-1 in vivo. Therefore, the mechanism for beta-catenin nuclear localization remains to be established.
We have analyzed beta-catenin nuclear import in an in vitro assay using permeabilized cells. Beta-catenin docks specifically onto the nuclear envelope in the absence of other cytosolic factors. Docking is not inhibited by an NLS peptide and does not require importins/karyopherins, the receptors for classical NLS substrates. Rather, docking is specifically competed by importin-beta/beta-karyopherin, indicating that beta-catenin and importin-beta/beta-karyopherin both interact with common nuclear pore components. Nuclear translocation of beta-catenin is energy dependent and is inhibited by nonhydrolyzable GTP analogs and by a dominant-negative mutant form of the Ran GTPase. Cytosol preparations contain inhibitory activities for beta-catenin import that are distinct from the competition by importin-beta/beta-karyopherin and may be involved in the physiological regulation of the pathway.
Beta-catenin is imported into the nucleus by binding directly to the nuclear pore machinery, similar to importin-beta/beta-karyopherin or other importin-beta-like import factors, such as transportin. These findings provide an explanation for how beta-catenin localizes to the nucleus without an NLS and independently of its interaction with TCF/LEF-1. This is a new and unusual mechanism for the nuclear import of a signal transduction protein. The lack of beta-catenin import activity in the presence of normal cytosol suggests that its import may be regulated by upstream events in the Wnt signaling pathway.
控制特定蛋白质的核定位是调节许多信号转导途径的重要机制。在Wnt信号通路激活后,β-连环蛋白定位于细胞核并与TCF/LEF-1(T细胞因子/淋巴细胞增强因子-1)转录因子相互作用,触发下游基因的激活。调节核定位在β-连环蛋白信号传导中的作用仍不清楚。β-连环蛋白没有核定位序列(NLS)。虽然有报道称β-连环蛋白可以通过与TCF/LEF-1结合而“搭便车”进入细胞核,但有证据表明其在体内的导入独立于TCF/LEF-1。因此,β-连环蛋白核定位的机制仍有待确定。
我们使用通透细胞在体外试验中分析了β-连环蛋白的核输入。在没有其他胞质因子的情况下,β-连环蛋白特异性地停靠在核膜上。停靠不受NLS肽的抑制,也不需要输入蛋白/核转运蛋白(经典NLS底物的受体)。相反,停靠受到输入蛋白-β/β-核转运蛋白的特异性竞争,表明β-连环蛋白和输入蛋白-β/β-核转运蛋白都与共同的核孔成分相互作用。β-连环蛋白的核转位是能量依赖性的,并且受到不可水解的GTP类似物和Ran GTP酶的显性负突变体形式的抑制。胞质制剂含有对β-连环蛋白导入的抑制活性,这与输入蛋白-β/β-核转运蛋白的竞争不同,可能参与该途径的生理调节。
β-连环蛋白通过直接与核孔机制结合而被导入细胞核,类似于输入蛋白-β/β-核转运蛋白或其他输入蛋白-β样导入因子,如运输蛋白。这些发现解释了β-连环蛋白如何在没有NLS且独立于其与TCF/LEF-1相互作用的情况下定位于细胞核。这是信号转导蛋白核输入的一种新的、不寻常的机制。在正常胞质存在的情况下缺乏β-连环蛋白导入活性表明其导入可能受Wnt信号通路中上游事件的调节。