Tennigkeit F, Schwarz D W, Puil E
Department of Pharmacology and Therapeutics, and The Rotary Hearing Centre, The University of British Columbia, Vancouver, Canada.
Neuroscience. 1998 Apr;83(4):1063-73. doi: 10.1016/s0306-4522(97)00458-2.
Neurons in the ventral partition of the medial geniculate body are able to fire high-threshold Ca2+-spikes. The neurons normally discharge such spikes on low-threshold Ca2+-spikes after the action potentials of a burst. We studied membrane mechanisms that regulate the discharge of high-threshold Ca2+-spikes, using whole-cell recording techniques in a slice preparation of rat thalamus. A subthreshold (persistent) Na+-conductance amplified depolarizing inputs, enhancing membrane excitability in the tonic firing mode and amplifying the low-threshold Ca2+-spike in the burst firing mode. Application of tetrodotoxin blocked the amplification and high-threshold Ca2+-spike firing. A slowly inactivating K+ conductance, sensitive to blockade with 4-aminopyridine (50-100 microM), but not tetraethylammonium (2-10 mM), appeared to suppress excitability and high-threshold Ca2+-spike firing. Application of 4-aminopyridine increased the low-threshold Ca2+-spike and the number of action potentials in the burst, and led to a conversion of the superimposed high-threshold Ca2+-spike into a plateau potential. Application of the Ca2+-channel blocker Cd2+ (50 microM), reduced or eliminated this plateau potential. The tetrodotoxin sensitive, persistent Na+-conductance also sustained plateau potentials, triggered after 4-aminopyridine application on depolarization by current pulses. Our results suggest that high-threshold Ca2+-spike firing, and a short-term influx of Ca2+, are regulated by a balance of voltage-dependent conductances. Normally, a slowly inactivating A-type K+-conductance may reduce high-threshold Ca2+-spike firing and shorten high-threshold Ca2+-spike duration. A persistent Na+-conductance promotes coupling of the low-threshold Ca2+-spike to a high-threshold Ca2+-spike. Thus, the activation of both voltage-dependent conductances would affect Ca2+ influx into ventral medial geniculate neurons. This would alter the quality of the different signals transmitted in the thalamocortical system during wakefulness, sleep and pathological states.
内侧膝状体腹侧分区的神经元能够产生高阈值Ca2+尖峰。这些神经元通常在一串动作电位后的低阈值Ca2+尖峰上释放此类尖峰。我们使用大鼠丘脑脑片制备中的全细胞记录技术,研究了调节高阈值Ca2+尖峰放电的膜机制。阈下(持续性)Na+电导放大去极化输入,增强紧张性放电模式下的膜兴奋性,并放大爆发性放电模式下的低阈值Ca2+尖峰。应用河豚毒素可阻断这种放大作用和高阈值Ca2+尖峰放电。一种对4-氨基吡啶(50-100 microM)敏感但对四乙铵(2-10 mM)不敏感的缓慢失活K+电导,似乎抑制了兴奋性和高阈值Ca2+尖峰放电。应用4-氨基吡啶增加了低阈值Ca2+尖峰和爆发中的动作电位数量,并导致叠加的高阈值Ca2+尖峰转变为平台电位。应用Ca2+通道阻滞剂Cd2+(50 microM)可降低或消除这种平台电位。河豚毒素敏感的持续性Na+电导也维持了平台电位,该电位是在应用4-氨基吡啶后通过电流脉冲去极化触发的。我们的结果表明,高阈值Ca2+尖峰放电以及Ca2+的短期内流受电压依赖性电导平衡的调节。正常情况下,缓慢失活的A型K+电导可能会减少高阈值Ca2+尖峰放电并缩短高阈值Ca2+尖峰持续时间。持续性Na+电导促进低阈值Ca2+尖峰与高阈值Ca2+尖峰的耦合。因此,两种电压依赖性电导的激活都会影响Ca2+流入腹侧内侧膝状体神经元。这将改变清醒、睡眠和病理状态下丘脑皮质系统中传递的不同信号的质量。