Suppr超能文献

丘系听觉丘脑信号转换机制。

Mechanisms for signal transformation in lemniscal auditory thalamus.

作者信息

Tennigkeit F, Schwarz D W, Puil E

机构信息

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada.

出版信息

J Neurophysiol. 1996 Dec;76(6):3597-608. doi: 10.1152/jn.1996.76.6.3597.

Abstract
  1. During alertness, lemniscal thalamocortical neurons in the ventral medial geniculate body (MGBv) encode sound signals by firing action potentials in a tonic mode. When they are in a burst firing mode, characteristic of thalamic neurons during some sleep states, the same stimuli may have an alerting function, leading to conscious perception of sound. We investigated the intrinsic membrane properties of MGBv neurons in search of mechanisms that enable them to convert from burst to tonic firing modes, allowing accurate signal coding of sensory stimuli. 2. We studied thalamocortical relay neurons and identified neurons morphologically with injected N-(2-aminoethyl) biotinamide hydrochloride in in vitro slice preparations of young rats. With the use of the whole cell recording method, we examined the contributions of distinct conductances to voltage responses evoked by current pulses. The neurons (n = 74) displayed a narrow range of resting potentials (-68 +/- 4 mV, mean +/- SD) and an average input resistance of 226 +/- 100 M omega. The membrane time constant was 40 +/- 17.6 ms and the action potential threshold was -51.6 +/- 3 mV. 3. Injections of hyperpolarizing current pulses from rest revealed an inward rectification produced by two voltage-dependent components. A fast component, sensitive to blockade with Ba2+ (100-200 microM), was attributed to an inward rectifier, IIR. Such applications also increased input resistance and depolarized neurons, consistent with a blockade of various K+ conductances. Application of Ba2+ often unmasked another voltage-dependent rectification with a slower time course. The second component was sensitive to blockade with Cs+ (1.5 mM), reminiscent of a hyperpolarization-activated current, IH. 4. Depolarizing pulses from rest produced ramp-shaped voltage responses that led to delayed tonic firing. Blockade of Na+ conductances by tetrodotoxin (TTX, 300-600 nM), or extracellular replacement of Ca2+ with Mg2+ (with TTX present), reduced the slope of the ramp and the overall depolarizing response. Application of 4-aminopyridine (4-AP, 100 microM), a blocker of A-type K+ conductances, increased input resistance and the overall depolarizing response. The voltage ramp therefore represents a complex rectification due to voltage-dependent contributions of persistent Na-, Ca2+, and K+ conductances. 5. Depolarizing pulses from potentials of less than -75 mV evoked phasic burst responses, consisting of one to seven action potentials riding on a low-threshold spike (LTS). The LTS was absent in low extracellular Ca2+ conditions and was blocked by application of Ni2+ (0.6 mM), but not by Cd2+ (50 microM). Similar depolarization from less than -80 mV evoked several action potentials, often followed by a TTX-resistant high-threshold spike (HTS) of longer duration. Firing of HTSs always occurred during 4-AP (100 microM) application, inferring that, normally, A-type K+ conductances may control ability to fire an HTS. As in the LTS, a Ca2+ current is a major participant in the HTS because extracellular replacement of Ca2+ with Mg2+ or application of Cd2+ (50 microM) blocked its genesis. After TTX blockade of Na+ conductances, "tonic firing" of HTSs occurred during depolarization above -45 mV. 6. During tonic firing evoked by current pulses, the second and subsequent spikes were longer in duration than the initial action potentials. Low extracellular concentrations of Ca2+ or Cd2+ (50 microM) application reduced the durations of the nonprimary spikes, inferring a contribution of high-threshold voltage-dependent Ca2+ conductances to their repolarizing phase. Also, K+ conductances may contribute to spike repolarization, because 4-AP (100 microM) or tetraethylammonium (2 mM) application led to prolonged action potentials and the generation of plateau potentials. A fast afterhyperpolarization, likely mediated by a Ca(2+)-dependent K+ conductance, limited the tonic firing. Such conductances, therefore, may regulate the re
摘要
  1. 在警觉状态下,腹内侧膝状体(MGBv)中的lemniscal丘脑皮质神经元通过以紧张性模式发放动作电位来编码声音信号。当它们处于爆发式放电模式时(这是丘脑神经元在某些睡眠状态下的特征),相同的刺激可能具有唤醒功能,从而导致对声音的有意识感知。我们研究了MGBv神经元的内在膜特性,以寻找使它们能够从爆发式放电转换为紧张性放电模式的机制,从而实现对感觉刺激的准确信号编码。2. 我们研究了丘脑皮质中继神经元,并在幼鼠的体外脑片制备中通过注射盐酸N-(2-氨乙基)生物素酰胺从形态上鉴定神经元。使用全细胞记录方法,我们研究了不同电导对电流脉冲诱发的电压反应的贡献。这些神经元(n = 74)的静息电位范围较窄(-68±4 mV,平均值±标准差),平均输入电阻为226±100 MΩ。膜时间常数为40±17.6 ms,动作电位阈值为-51.6±3 mV。3. 从静息状态注射超极化电流脉冲显示出由两个电压依赖性成分产生的内向整流。一个快速成分,对Ba2+(100 - 200 μM)阻断敏感,归因于内向整流器IIR。这种应用还增加了输入电阻并使神经元去极化,这与阻断各种K+电导一致。Ba2+的应用常常揭示出另一种具有较慢时间进程的电压依赖性整流。第二个成分对Cs+(1.5 mM)阻断敏感,类似于超极化激活电流IH。4. 从静息状态进行的去极化脉冲产生斜坡状电压反应,导致延迟的紧张性放电。河豚毒素(TTX,300 - 600 nM)阻断Na+电导,或用Mg2+(存在TTX时)细胞外替代Ca2+,会降低斜坡的斜率和整体去极化反应。应用4-氨基吡啶(4-AP,100 μM),一种A型K+电导的阻断剂,增加了输入电阻和整体去极化反应。因此,电压斜坡代表了由于持续性Na+、Ca2+和K+电导的电压依赖性贡献而产生的复杂整流。5. 从低于-75 mV的电位进行的去极化脉冲诱发相位爆发反应,由一到七个动作电位叠加在一个低阈值尖峰(LTS)上组成。在低细胞外Ca2+条件下LTS不存在,并且应用Ni2+(0.6 mM)可阻断LTS,但Cd2+(50 μM)不能。从低于-80 mV进行类似的去极化诱发几个动作电位,通常随后是持续时间更长的对TTX不敏感的高阈值尖峰(HTS)。HTS的发放总是在应用4-AP(100 μM)期间发生,这表明通常情况下,A型K+电导可能控制HTS的发放能力。与LTS一样,Ca2+电流是HTS的主要参与者,因为用Mg2+细胞外替代Ca2+或应用Cd2+(50 μM)会阻断其产生。在TTX阻断Na+电导后,在高于-45 mV的去极化期间会出现HTS的“紧张性放电”。6. 在电流脉冲诱发的紧张性放电期间,第二个及后续的尖峰持续时间比初始动作电位长。低细胞外浓度的Ca2+或Cd2+(50 μM)应用会缩短非初级尖峰的持续时间,这表明高阈值电压依赖性Ca2+电导对其复极化阶段有贡献。此外,K+电导可能对尖峰复极化有贡献,因为应用4-AP(100 μM)或四乙铵(2 mM)会导致动作电位延长和平原电位的产生。一个快速的超极化后电位,可能由Ca(2 +)依赖性K+电导介导,限制了紧张性放电。因此,这些电导可能调节……

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验