Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G, Lyonnet S, Billaud M
Unité de Recherches sur les Handicaps Génétiques de l'Enfant INSERM U-393, Paris Cedex 15, France.
J Clin Invest. 1998 Mar 15;101(6):1415-23. doi: 10.1172/JCI375.
Hirschsprung's disease (HSCR) is a common congenital malformation characterized by the absence of intramural ganglion cells of the hindgut. Recently, mutations of the RET tyrosine kinase receptor have been identified in 50 and 15-20% of familial and sporadic HSCR, respectively. These mutations include deletion, insertion, frameshift, nonsense, and missense mutations dispersed throughout the RET coding sequence. To investigate their effects on RET function, seven HSCR missense mutations were introduced into either a 1114-amino acid wild-type RET isoform (RET51) or a constitutively activated form of RET51 (RET-MEN 2A). Here, we report that one mutation affecting the extracytoplasmic cadherin domain (R231H) and two mutations located in the tyrosine kinase domain (K907E, E921K) impaired the biological activity of RET-MEN 2A when tested in Rat1 fibroblasts and pheochromocytoma PC12 cells. However, the mechanisms resulting in RET inactivation differed since the receptor bearing R231H extracellular mutation resulted in an absent RET protein at the cell surface while the E921K mutation located within the catalytic domain abolished its enzymatic activity. In contrast, three mutations mapping into the intracytoplasmic domain neither modified the transforming capacity of RET-MEN 2A nor stimulated the catalytic activity of RET in our ligand-independent system (S767R, P1039L, M1064T). Finally, the C609W HSCR mutation exerts a dual effect on RET since it leads to a decrease of the receptor at the cell surface and converted RET51 into a constitutively activated kinase due to the formation of disulfide-linked homodimers. Taken together, our data show that allelic heterogeneity at the RET locus in HSCR is associated with various molecular mechanisms responsible for RET dysfunction.
先天性巨结肠症(HSCR)是一种常见的先天性畸形,其特征是后肠壁内神经节细胞缺失。最近,分别在50%的家族性和15 - 20%的散发性HSCR中发现了RET酪氨酸激酶受体的突变。这些突变包括缺失、插入、移码、无义突变和错义突变,分布在RET编码序列中。为了研究它们对RET功能的影响,将七个HSCR错义突变引入到1114个氨基酸的野生型RET异构体(RET51)或组成型激活形式的RET51(RET - MEN 2A)中。在此,我们报告,当在大鼠1成纤维细胞和嗜铬细胞瘤PC12细胞中进行测试时,一个影响胞外钙黏蛋白结构域的突变(R231H)和两个位于酪氨酸激酶结构域的突变(K907E、E921K)损害了RET - MEN 2A的生物学活性。然而,导致RET失活的机制不同,因为携带R231H细胞外突变的受体在细胞表面导致RET蛋白缺失,而位于催化结构域内的E921K突变消除了其酶活性。相比之下,位于胞质结构域的三个突变在我们的非配体依赖系统中既未改变RET - MEN 2A的转化能力,也未刺激RET的催化活性(S767R、P1039L、M1064T)。最后,C609W HSCR突变对RET产生双重影响,因为它导致细胞表面受体减少,并由于形成二硫键连接的同二聚体而将RET51转化为组成型激活激酶。综上所述,我们的数据表明,HSCR中RET基因座的等位基因异质性与导致RET功能障碍的各种分子机制有关。