Suppr超能文献

大鼠视交叉上核切片中神经元的电生理和形态异质性

Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus.

作者信息

Pennartz C M, De Jeu M T, Geurtsen A M, Sluiter A A, Hermes M L

机构信息

Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands.

出版信息

J Physiol. 1998 Feb 1;506 ( Pt 3)(Pt 3):775-93. doi: 10.1111/j.1469-7793.1998.775bv.x.

Abstract
  1. Whole cell patch clamp recordings of neurons in slices of the suprachiasmatic nucleus (SCN) were made in order to assess their electrophysiological and morphological heterogeneity. This assessment was accomplished by (i) quantification of intrinsic membrane properties recorded in current clamp mode, (ii) studying frequency distributions of these properties, (iii) grouping of cells based on visual inspection of data records, and (iv) use of cluster analysis methods. 2. Marked heterogeneity was found in the resting membrane potential, input resistance, time constant, rate of frequency adaptation, size of rebound depolarization (low-threshold Ca2+ potential) and regularity of firing. The frequency distribution of these membrane properties deviated significantly from a normal distribution. Other parameters, including spike amplitude and width, amplitude and rising slope of the spike after-hyperpolarization (AHP) and amplitude of the spike train AHP, showed considerable variability as well but generally obeyed a normal distribution. 3. Visual inspection of the data led to partitioning of cells into three clusters, viz. cluster I characterized by monophasic spike AHPs and irregular firing in the frequency range from 1.5 to 5.0 Hz; cluster II with biphasic spike AHPs and regular firing in the same range; and cluster III with large rebound depolarizations and biphasic spike AHPs. In a post hoc analysis, these clusters also appeared to differ in other membrane properties. This grouping was confirmed by hierarchical tree clustering and multidimensional scaling. 4. The light microscopic properties of recorded neurons were studied by biocytin labelling. Neurons had monopolar, bipolar or multipolar branching patterns and were often varicose. Axons sometimes originated from distal dendritic segments and usually branched into multiple collaterals. Many cells with extra-SCN projections also possessed intranuclear axon collaterals. We found no morphological differences between clusters except that cluster III neurons possessed more axon collaterals than cluster I or II cells. 5. These results suggest that SCN neurons are heterogeneous in some basic as well as active membrane properties and can be partitioned into at least three clusters. Cluster I and II cells fire spontaneously in a regular and irregular mode, respectively, and sustain prolonged spike trains. In contrast, cluster III cells have low firing rates but may adopt a burst-like firing mode when receiving appropriate input. While all clusters transmit output to target cells within and outside SCN, cluster III cells in particular are suggested to affect excitability of large numbers of SCN neurons by their extensive local network of axon collaterals.
摘要
  1. 为评估视交叉上核(SCN)切片中神经元的电生理和形态异质性,进行了全细胞膜片钳记录。该评估通过以下方式完成:(i)对电流钳模式下记录的内在膜特性进行量化;(ii)研究这些特性的频率分布;(iii)根据数据记录的目视检查对细胞进行分组;(iv)使用聚类分析方法。2. 在静息膜电位、输入电阻、时间常数、频率适应率、反弹去极化大小(低阈值Ca2+电位)和放电规律性方面发现了明显的异质性。这些膜特性的频率分布显著偏离正态分布。其他参数,包括动作电位幅度和宽度、动作电位后超极化(AHP)的幅度和上升斜率以及动作电位序列AHP的幅度,也表现出相当大的变异性,但总体上服从正态分布。3. 对数据的目视检查导致将细胞分为三个簇,即:簇I的特征是单相动作电位AHP和1.5至5.0 Hz频率范围内的不规则放电;簇II具有双相动作电位AHP并在相同频率范围内规则放电;簇III具有大的反弹去极化和双相动作电位AHP。在事后分析中,这些簇在其他膜特性上也似乎存在差异。这种分组通过层次树聚类和多维标度得到了证实。4. 通过生物素标记研究了记录神经元的光学显微镜特性。神经元具有单极、双极或多极分支模式,且常常有曲张。轴突有时起源于远端树突段,通常分支成多个侧支。许多具有SCN外投射的细胞也有核内轴突侧支。我们发现簇之间没有形态学差异,只是簇III神经元比簇I或II细胞具有更多的轴突侧支。5. 这些结果表明,SCN神经元在一些基本以及活动膜特性方面是异质的,并且可以分为至少三个簇。簇I和II细胞分别以规则和不规则模式自发放电,并维持长时间的动作电位序列。相比之下,簇III细胞的放电频率较低,但在接收适当输入时可能采用爆发样放电模式。虽然所有簇都向SCN内外的靶细胞传递输出,但特别是簇III细胞被认为通过其广泛的局部轴突侧支网络影响大量SCN神经元的兴奋性。

相似文献

1
Electrophysiological and morphological heterogeneity of neurons in slices of rat suprachiasmatic nucleus.
J Physiol. 1998 Feb 1;506 ( Pt 3)(Pt 3):775-93. doi: 10.1111/j.1469-7793.1998.775bv.x.
2
Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus.
J Neurophysiol. 1998 Nov;80(5):2710-7. doi: 10.1152/jn.1998.80.5.2710.
3
Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.
J Physiol. 1993 May;464:229-43. doi: 10.1113/jphysiol.1993.sp019632.
4
Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro.
J Physiol. 2000 Sep 1;527 Pt 2(Pt 2):291-304. doi: 10.1111/j.1469-7793.2000.t01-1-00291.x.
8
Electrophysiological and morphological heterogeneity of slow firing neurons in medial septal/diagonal band complex as revealed by cluster analysis.
Neuroscience. 2007 May 25;146(3):931-45. doi: 10.1016/j.neuroscience.2007.02.047. Epub 2007 Apr 6.
10
Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus.
J Neurophysiol. 2006 Jul;96(1):109-18. doi: 10.1152/jn.01369.2005. Epub 2006 Feb 8.

引用本文的文献

1
Neuronal reprogramming of mouse and human fibroblasts using transcription factors involved in suprachiasmatic nucleus development.
iScience. 2024 Jan 30;27(3):109051. doi: 10.1016/j.isci.2024.109051. eCollection 2024 Mar 15.
2
Kv12-encoded K+ channels drive the day-night switch in the repetitive firing rates of SCN neurons.
J Gen Physiol. 2023 Sep 4;155(9). doi: 10.1085/jgp.202213310. Epub 2023 Jul 26.
4
Plasticity manifolds and degeneracy govern circadian oscillations of neuronal intrinsic properties in the suprachiasmatic nucleus.
iScience. 2023 Mar 27;26(4):106503. doi: 10.1016/j.isci.2023.106503. eCollection 2023 Apr 21.
5
Kv12-Encoded K Channels Drive the Day-Night Switch in the Repetitive Firing Rates of SCN Neurons.
bioRxiv. 2023 Feb 2:2023.01.30.526323. doi: 10.1101/2023.01.30.526323.
6
Daily electrical activity in the master circadian clock of a diurnal mammal.
Elife. 2021 Nov 30;10:e68179. doi: 10.7554/eLife.68179.
7
BK channel activation by L-type Ca channels Ca1.2 and Ca1.3 during the subthreshold phase of an action potential.
J Neurophysiol. 2021 Aug 1;126(2):427-439. doi: 10.1152/jn.00089.2021. Epub 2021 Jun 30.
8
A three-dimensional musculoskeletal model of the dog.
Sci Rep. 2021 May 31;11(1):11335. doi: 10.1038/s41598-021-90058-0.
9
Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States.
Front Neurol. 2021 Mar 29;12:625369. doi: 10.3389/fneur.2021.625369. eCollection 2021.

本文引用的文献

3
Tracer and electrical coupling of rat suprachiasmatic nucleus neurons.
Neuroscience. 1997 Apr;77(4):1059-66. doi: 10.1016/s0306-4522(96)00539-8.
4
Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices.
J Physiol. 1997 Feb 15;499 ( Pt 1)(Pt 1):141-59. doi: 10.1113/jphysiol.1997.sp021917.
5
Circadian rhythms of neuropeptides in the suprachiasmatic nucleus.
Prog Brain Res. 1996;111:75-90. doi: 10.1016/s0079-6123(08)60401-x.
6
Action potentials recorded with patch-clamp amplifiers: are they genuine?
Trends Neurosci. 1996 Dec;19(12):530-4. doi: 10.1016/s0166-2236(96)40004-2.
7
9
Potassium currents in motoneurones.
Prog Neurobiol. 1995 Dec;47(6):513-31. doi: 10.1016/0301-0082(95)00032-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验