Steinmetzer K, Reinert K E
Friedrich-Schiller-Universität, Institut für Molekularbiologie, Abt. Biophysikalische Chemie, Jena, Germany.
J Biomol Struct Dyn. 1998 Feb;15(4):779-91. doi: 10.1080/07391102.1998.10508992.
The interaction of the minor groove binding ligand Hoechst 33258 (Hoe) with natural DNA was investigated by high resolution titration rotational viscometry. Analysis of the concomitant DNA conformational changes was performed with two DNA samples of sufficiently different molar mass M, at 4 degrees C, 22 degrees C and 40 degrees C, for Hoe/DNA-P ratios below r = 0.02. In this narrow r range several interaction modes could be resolved. The measured conformational changes were quantified in terms of relative changes of both apparent DNA persistence length, delta a/a, and hydrodynamically operative DNA contour length, deltaL/L. Delta a/a(r) primarily is a measure of ligand-induced DNA helix stiffening, but both, delta a/a(r) and deltaL/L(r), generally depend also on ligand binding induced DNA bending or DNA unbending. The essential difference obviously is that delta a/a(r) is influenced by the randomly distributed helix bends and deltaL/L(r) by phased ones. The measurements performed at different temperatures deliver informations about existence and temperature dependent abolition of intrinsic helix curvature. Both Hoe and netropsin (Nt) prefer binding to AT rich DNA segments, which are candidates for intrinsic DNA helix bends. But our data for Hoe interaction with calf thymus DNA (ctDNA) show characteristic differences to those for Nt-ctDNA interaction. Especially for Hoe, the mode of highest affinity is saturated already at a ligand concentration of roughly 1 nM (r approximately = 0.0015 Hoe/DNA-P). It exhibits an unusually strong temperature dependence of the conformational DNA response. A Hoe-Nt competition experiment shows that Hoe binding to the sites of the very first Hoe mode is almost unaffected by bound Nt. But Hoe binding to the sites of the following Hoe modes does not occur due to the competition with Nt. Thus this mode of strongest Hoe-DNA interaction reflects a unique mechanism, possibly of high relevance for gene regulatory systems.
通过高分辨率滴定旋转粘度法研究了小沟结合配体Hoechst 33258(Hoe)与天然DNA的相互作用。在4℃、22℃和40℃下,使用两种摩尔质量M差异足够大的DNA样品,对Hoe/DNA-P比率低于r = 0.02的情况进行了伴随DNA构象变化的分析。在这个狭窄的r范围内,可以分辨出几种相互作用模式。所测量的构象变化通过表观DNA持久长度的相对变化δa/a和流体动力学有效DNA轮廓长度的相对变化δL/L来量化。δa/a(r)主要是配体诱导的DNA螺旋变硬的量度,但δa/a(r)和δL/L(r)通常也取决于配体结合诱导的DNA弯曲或DNA解弯曲。明显的本质区别在于,δa/a(r)受随机分布的螺旋弯曲影响,而δL/L(r)受相位弯曲影响。在不同温度下进行的测量提供了关于内在螺旋曲率的存在及其温度依赖性消除的信息。Hoe和纺锤菌素(Nt)都更喜欢与富含AT的DNA片段结合,这些片段是内在DNA螺旋弯曲的候选者。但是我们关于Hoe与小牛胸腺DNA(ctDNA)相互作用的数据显示出与Nt-ctDNA相互作用数据的特征差异。特别是对于Hoe,最高亲和力模式在配体浓度约为1 nM(r约= 0.0015 Hoe/DNA-P)时就已饱和。它表现出构象DNA响应异常强烈的温度依赖性。Hoe-Nt竞争实验表明,Hoe与第一个Hoe模式位点的结合几乎不受结合的Nt影响。但由于与Nt的竞争,Hoe不会与随后的Hoe模式位点结合。因此,这种最强的Hoe-DNA相互作用模式反映了一种独特的机制,可能与基因调控系统高度相关。