Reinert K E
Institut of Microbiology and Experimental Therapy, Department of Biophysical Chemistry, Jena, Germany.
J Biomol Struct Dyn. 1991 Oct;9(2):331-52. doi: 10.1080/07391102.1991.10507916.
For several DNA-ligand systems the DNA helix bending, stiffening and elongation behaviour is treated quantitatively. The experimental basis are viscosity data from literature as a function of r, the ratio of drug molecules bound per DNA monomer unit. If the relative viscosity changes delta y1(r) and delta yh(r) for DNA of low and high molar mass, respectively, are known, the relative changes of contour length, delta L/L degrees, and of persistence length, delta a/a degrees, can be evaluated as a function of r, as repeatedly demonstrated. For random sequence-independent interactions, helix-bending is reflected by a helix-typical increment of delta a/a degrees (r), being zero at r = 0 and also at DNA saturation by bound ligand molecules [Reinert, Biophysical Chemistry 13, 1-14 (1981)]. This characteristic DNA behaviour often enables us to separate the bending and the stiffening increment of delta a/a degrees. The theoretical treatment of this problem (Schütz and Reinert, J. Biomolec. Struct. & Dynam. 9, 315-329, 1991) now permits a more detailed study of the ligand-induced DNA bending. The ligand-DNA systems treated here concern the following drugs (in parentheses DNA bending angle at low r-values): proflavin (8 degrees), daunomycin (11 degrees), aclacinomycin A (9.7 degrees, on cooperative interaction), actinomycin D (16 degrees), mitomycin C (16 degrees), a double intercalating bisphenantridine (12 degrees), 9-deacetyl-daunomycin (8 degrees) and 9-epi-deacetyl-daunomycin (12-18 degrees). We also demonstrate that the consideration of the DNA flexibility and its change on interaction of short DNA molecules with intercalating drugs delivers helix elongation values in better accord with the theoretical value. In the Appendix, a catalogue of simulated delta y(r)-dependences is given for both short and long DNA molecules. It systematically describes the DNA viscosity response upon typical DNA stiffening, elongation, and helix-bending effects.
对于几种DNA - 配体系统,对DNA螺旋弯曲、变硬和伸长行为进行了定量处理。实验依据是文献中作为r(每个DNA单体单元结合的药物分子比率)函数的粘度数据。如果分别已知低摩尔质量和高摩尔质量DNA的相对粘度变化δy1(r)和δyh(r),那么轮廓长度的相对变化δL/L°以及持久长度的相对变化δa/a°就可以作为r的函数来评估,这已被反复证明。对于与序列无关的随机相互作用,螺旋弯曲由δa/a°(r)的螺旋典型增量反映,在r = 0时以及被结合配体分子饱和的DNA处为零[赖纳特,《生物物理化学》13,1 - 14(1981)]。这种典型的DNA行为常常使我们能够区分δa/a°的弯曲增量和变硬增量。现在,对这个问题的理论处理(舒茨和赖纳特,《生物分子结构与动力学杂志》9,315 - 329,1991)允许对配体诱导的DNA弯曲进行更详细的研究。这里处理的配体 - DNA系统涉及以下药物(括号内为低r值时的DNA弯曲角度):原黄素(8°)、柔红霉素(11°)、阿克拉霉素A(9.7°,存在协同相互作用)、放线菌素D(16°)、丝裂霉素C(16°)、双插入双菲啶(12°)、9 - 去乙酰柔红霉素(8°)和9 - 表 - 去乙酰柔红霉素(12 - 18°)。我们还证明,考虑DNA的柔韧性及其在短DNA分子与插入药物相互作用时的变化,能得到与理论值更相符的螺旋伸长值。在附录中,给出了短DNA分子和长DNA分子模拟的δy(r)依赖性目录。它系统地描述了典型的DNA变硬、伸长和螺旋弯曲效应下的DNA粘度响应。