Gallois L, Fiallo M, Garnier-Suillerot A
Laboratoire de Physicochimie Biomoléculaire et Cellulaire (URA CNRS 2056), Université Paris Nord, 74, rue Marcel Cachin, 93017 Bobigny Cedex, France.
Biochim Biophys Acta. 1998 Mar 6;1370(1):31-40. doi: 10.1016/s0005-2736(97)00241-1.
Doxorubicin, daunorubicin and other anthracycline antibiotics constitute one of the most important groups of drugs used today in cancer chemotherapy. The details of the drug interactions with membranes are of particular importance in the understanding of their kinetics of passive diffusion through the membrane which is itself basic in the context of multidrug resistance (MDR) of cancer cells. Anthracyclines are amphiphilic molecules possessing dihydroxyanthraquinone ring system which is neutral under the physiological conditions. Their lipophilicity depends on the substituents. The amino sugar moiety bears the positive electrostatic charge localised at the protonated amino nitrogen. The four anthracyclines used in this study doxorubicin, daunorubicin, idarubicin and idarubicinol (an idarubicin metabolite readily formed inside the cells) have the same amino sugar moiety, daunosamine, with pKa of 8.4. Thus, all drugs studied will exhibit very similar electrostatic interactions with membranes, while the major differences in overall drug-membrane behaviour will result from their hydrophobic features. Circular dichroism (CD) spectroscopy was used to understand more precisely the conformational aspects of the drug-membrane systems. Large unilamellar vesicles (LUV) consisting of phosphatidylcholine, phosphatidic acid (PA) and cholesterol, were used. The anthracycline-LUV interactions depend on the molar ratio of phospholipids per drug. At low molar ratios drug:PA, these interactions depend also on the anthracycline lipophilicity. Thus, both doxorubicin and daunorubicin bind to membranes as monomers and their CD signal in the visible is positive. However, doxorubicin with its very low lipophilicity binds to the LUV through electrostatic interactions, with the dihydroxyanthraquinone moiety being in the aqueous phase, while daunorubicin, which is more lipophilic is unable to bind only through electrostatic interactions and actually the hydrophobic interactions are the only detected. The highly hydrophobic idarubicin, forms within the bilayer a rather complex entity involving 2-3 molecules of idarubicin associated in the right-handed conformation, one cholesterol molecule and also molecule(s) of phosphatidic acid, as this special oligomeric species is not detected in the absence of negatively-charged phospholipids. Idarubicinol differs from idarubicin with CH(13)-OH instead of C(13)=O and its interactions with LUV are distinctly different. Its CD signal in the visible becomes negative and no self associations of the molecule within the bilayer could be detected. The variation of the sign of the Cotton effect (positive to negative) may derive from the changes in the C(6a)-C(7)-O(7)-C(1') dihedral angle. It is noteworthy that C(13)-OH group, which strongly favours formation of the dimeric species in aqueous solutions when compared to idarubicin prevent association inside the LUV bilayer. At high ratios of phospholipids per drug all of them are embedded within the bilayer as monomer.
多柔比星、柔红霉素及其他蒽环类抗生素是当今癌症化疗中使用的最重要的药物类别之一。药物与膜的相互作用细节对于理解其通过膜的被动扩散动力学尤为重要,而这本身在癌细胞多药耐药(MDR)的背景下是基础的。蒽环类药物是具有二羟基蒽醌环系统的两亲性分子,在生理条件下呈中性。它们的亲脂性取决于取代基。氨基糖部分带有位于质子化氨基氮上的正静电电荷。本研究中使用的四种蒽环类药物多柔比星、柔红霉素、伊达比星和伊达比星醇(一种在细胞内易于形成的伊达比星代谢物)具有相同的氨基糖部分,即柔红糖胺,其pKa为8.4。因此,所有研究的药物与膜将表现出非常相似的静电相互作用,而药物 - 膜整体行为的主要差异将源于它们的疏水特性。圆二色性(CD)光谱用于更精确地了解药物 - 膜系统的构象方面。使用了由磷脂酰胆碱、磷脂酸(PA)和胆固醇组成的大单层囊泡(LUV)。蒽环类药物 - LUV相互作用取决于每种药物的磷脂摩尔比。在低药物:PA摩尔比时,这些相互作用也取决于蒽环类药物的亲脂性。因此,多柔比星和柔红霉素均以单体形式与膜结合,它们在可见光区域的CD信号为正。然而,亲脂性极低的多柔比星通过静电相互作用与LUV结合,二羟基蒽醌部分处于水相中,而亲脂性更强的柔红霉素仅通过静电相互作用无法结合,实际上检测到的只有疏水相互作用。高度疏水的伊达比星在双层膜内形成一个相当复杂的实体,涉及2 - 3个以右手构象缔合的伊达比星分子、一个胆固醇分子以及磷脂酸分子,因为在没有带负电荷的磷脂时未检测到这种特殊的寡聚体物种。伊达比星醇与伊达比星不同,其为CH(13)-OH而非C(13)=O,并且它与LUV的相互作用明显不同。其在可见光区域的CD信号变为负,并且在双层膜内未检测到分子的自缔合。科顿效应符号的变化(从正到负)可能源于C(6a)-C(7)-O(7)-C(1')二面角的变化。值得注意的是,与伊达比星相比,C(13)-OH基团在水溶液中强烈促进二聚体物种的形成,但在LUV双层膜内却阻止缔合。在高药物磷脂比时,它们全部以单体形式嵌入双层膜内。