Suppr超能文献

人芳基硫酸酯酶A的晶体结构:活性位点处的醛基官能团和金属离子揭示了硫酸酯水解的新机制。

Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.

作者信息

Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W

机构信息

Institut für Kristallographie, Freie Universität Berlin, Germany.

出版信息

Biochemistry. 1998 Mar 17;37(11):3654-64. doi: 10.1021/bi9714924.

Abstract

Human lysosomal arylsulfatase A (ASA) is a prototype member of the sulfatase family. These enzymes require the posttranslational oxidation of the -CH2SH group of a conserved cysteine to an aldehyde, yielding a formylglycine. Without this modification sulfatases are catalytically inactive, as revealed by a lysosomal storage disorder known as multiple sulfatase deficiency. The 2.1 A resolution X-ray crystal structure shows an ASA homooctamer composed of a tetramer of dimers, (alpha 2)4. The alpha/beta fold of the monomer has significant structural analogy to another hydrolytic enzyme, the alkaline phosphatase, and superposition of these two structures shows that the active centers are located in largely identical positions. The functionally essential formylglycine is located in a positively charged pocket and acts as ligand to an octahedrally coordinated metal ion interpreted as Mg2+. The electron density at the formylglycine suggests the presence of a 2-fold disordered aldehyde group with the possible contribution of an aldehyde hydrate, -CH(OH)2, with gem-hydroxyl groups. In the proposed catalytic mechanism, the aldehyde accepts a water molecule to form a hydrate. One of the two hydroxyl groups hydrolyzes the substrate sulfate ester via a transesterification step, resulting in a covalent intermediate. The second hydroxyl serves to eliminate sulfate under inversion of configuration through C-O cleavage and reformation of the aldehyde. This study provides the structural basis for understanding a novel mechanism of ester hydrolysis and explains the functional importance of the unusually modified amino acid.

摘要

人溶酶体芳基硫酸酯酶A(ASA)是硫酸酯酶家族的原型成员。这些酶需要将保守半胱氨酸的-CH2SH基团进行翻译后氧化成醛,生成甲酰甘氨酸。如一种称为多种硫酸酯酶缺乏症的溶酶体贮积病所示,没有这种修饰,硫酸酯酶就没有催化活性。分辨率为2.1埃的X射线晶体结构显示,ASA为由二聚体四聚体(α2)4组成的同八聚体。单体的α/β折叠与另一种水解酶碱性磷酸酶具有显著的结构相似性,这两种结构的叠加表明活性中心位于大致相同的位置。功能上必不可少的甲酰甘氨酸位于一个带正电荷的口袋中,并作为与解释为Mg2+的八面体配位金属离子的配体。甲酰甘氨酸处的电子密度表明存在一个2倍无序的醛基,可能存在醛水合物-CH(OH)2,带有偕羟基。在所提出的催化机制中,醛接受一个水分子形成水合物。两个羟基中的一个通过酯交换步骤水解底物硫酸酯,生成一个共价中间体。第二个羟基通过C-O键断裂和醛的重新形成,在构型翻转的情况下消除硫酸根。这项研究为理解酯水解的新机制提供了结构基础,并解释了这种异常修饰氨基酸的功能重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验