Suppr超能文献

膜兴奋性与肽能神经末梢的分泌

Membrane excitability and secretion from peptidergic nerve terminals.

作者信息

Branchaw J L, Hsu S F, Jackson M B

机构信息

Department of Physiology, University of Wisconsin-Madison 53202, USA.

出版信息

Cell Mol Neurobiol. 1998 Feb;18(1):45-63. doi: 10.1023/a:1022523109900.

Abstract
  1. Thin slices of the posterior pituitary can be used as a preparation for the study of biophysical mechanisms underlying neuropeptide secretion. Patch-clamp techniques in this preparation have revealed the properties of ion channels that control the excitability of the nerve terminal membrane and have clarified the relation between Ca2+ and exocytosis. 2. Repetitive electrical activity at high frequencies broadens action potentials to allow more Ca2+ entry and thus enhance exocytosis. Action potential broadening results from the inactivation of a voltage-dependent K+ channel. 3. When repetitive electrical activity is sustained, secretion is depressed. This depression can be attributed in part to action potential failure caused by the opening of a Ca(2+)-activated K+ channel. This channel can be modulated by protein kinases, phosphatases, and G-proteins. 4. The inhibitory neurotransmitter GABA activates a GABAA receptor in the nerve terminal membrane. The gating of the associated Cl- channel depolarizes the membrane slightly to inactivate voltage-gated Na+ channels and block action potential propagation. 5. The response of the nerve terminal GABAA receptor is enhanced by neuroactive steroids and this can potentiate the inhibition of neurosecretion by GABA. The action of neurosteroids at this site could play a role in changes in neuropeptide secretion associated with reproductive transitions. 6. Ca2+ channels in the nerve terminal membrane are inactivated by sustained depolarization and by trains of brief pulses. Ca2+ entry promotes Ca2+ channel inactivation during trains by inhibiting the recovery of Ca2+ channels from inactivation. The inactivation of Ca2+ channels can play a role in defining the optimal frequency and train duration for evoking neuropeptide secretion. 7. Measurements of membrane capacitance in peptidergic nerve terminals have revealed rapid exocytosis and endocytosis evoked by Ca2+ entry through voltage-gated Ca2+ channels. Exocytosis is too rapid to account for the delays in neuropeptide secretion evoked by trains of action potentials. Endocytosis sets in rapidly after exocytosis with a time course comparable to that of the rapid endocytosis observed in nerve terminals at rapid synapses. Our results support the finding in rapid synaptic nerve terminals that endocytosis is inhibited by intracellular Ca2+. Multiple pools of vesicles were revealed, and these pools may reflect different stages in the mobilization and release of neuropeptide.
摘要
  1. 垂体后叶薄片可作为一种制备物,用于研究神经肽分泌背后的生物物理机制。该制备物中的膜片钳技术揭示了控制神经末梢膜兴奋性的离子通道特性,并阐明了Ca2+与胞吐作用之间的关系。2. 高频重复电活动会使动作电位变宽,从而允许更多Ca2+内流,进而增强胞吐作用。动作电位变宽是由电压依赖性K+通道失活引起的。3. 当重复电活动持续时,分泌会受到抑制。这种抑制部分可归因于Ca(2+)激活的K+通道开放导致的动作电位失败。该通道可被蛋白激酶、磷酸酶和G蛋白调节。4. 抑制性神经递质γ-氨基丁酸(GABA)激活神经末梢膜中的GABAA受体。相关Cl-通道的门控会使膜轻微去极化,从而使电压门控Na+通道失活并阻断动作电位的传播。5. 神经活性类固醇会增强神经末梢GABAA受体的反应,这可增强GABA对神经分泌的抑制作用。神经类固醇在此部位的作用可能在与生殖转变相关的神经肽分泌变化中发挥作用。6. 神经末梢膜中的Ca2+通道会因持续去极化和一串短暂脉冲而失活。在一串脉冲期间,Ca2+内流通过抑制Ca2+通道从失活状态的恢复来促进Ca2+通道失活。Ca2+通道的失活在确定诱发神经肽分泌的最佳频率和脉冲串持续时间方面可能起作用。7. 对肽能神经末梢膜电容的测量揭示了通过电压门控Ca2+通道的Ca2+内流所诱发的快速胞吐作用和内吞作用。胞吐作用太快,无法解释动作电位串诱发的神经肽分泌延迟。内吞作用在胞吐作用后迅速开始,其时间进程与快速突触处神经末梢中观察到的快速内吞作用相当。我们的结果支持在快速突触神经末梢中的发现,即内吞作用受细胞内Ca2+抑制。揭示了多个囊泡池,这些囊泡池可能反映了神经肽动员和释放的不同阶段。

相似文献

2
Presynaptic excitability.突触前兴奋性。
Int Rev Neurobiol. 1995;38:201-51. doi: 10.1016/s0074-7742(08)60527-9.
8
Membrane excitability in the neurohypophysis.神经垂体的膜兴奋性。
Adv Exp Med Biol. 1998;449:193-200. doi: 10.1007/978-1-4615-4871-3_25.

引用本文的文献

本文引用的文献

3
Presynaptic excitability.突触前兴奋性。
Int Rev Neurobiol. 1995;38:201-51. doi: 10.1016/s0074-7742(08)60527-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验