Suppr超能文献

[神经可塑性的理论与临床意义]

[Theoretical and clinical significance of neuroplasticity].

作者信息

Trojan S, Pokorný J

机构信息

Fyziologický ústav 1. Lékarské fakulty Univerzity Karlovy v Praze, Ceská Republika.

出版信息

Bratisl Lek Listy. 1997 Dec;98(12):667-73.

PMID:9525065
Abstract

Plasticity is a specific feature of the nervous system, characterized by two basic phenomena: The first type of "functional plasticity" develops comparatively quickly, brings about mainly functional changes and is usually reversible. The second type has the features of an adaptation and affects the expression of genotype into phenotype. Neuroplastic mechanisms are triggered by various natural or artificial stimuli which may differ quantitatively (they arise in the internal or external environment) or qualitatively. Neuroplastic mechanisms are based on modulation of the signal transmission over synapses (e.g., the transmitter release, activity of postsynaptic receptors, efficiency changes in the transmission in the postsynaptic segment). They can be related to the interneuronal relations changes (e.g., number of certain types of synapses, significance of the wiring of different elements of the neuronal circuits). Resulting changes may occur in the communication between neurons (synaptic level), in the activity of the local neuronal circuits (level of local circuits) or in the relations between individual functional brain systems (multimodular level). Neuroplasticity might be based on structural changes which can be revealed by morphological methods. Such forms of plasticity are more frequent during the development, or as a reaction to injury (proliferation and decease of neurons, formation of their processes and spines, remodelling, or formation of synapses). More specific methods have determined that these changes are located on the molecular level (enzyme activity, production and release of transmitters or modulators, receptor activation, modulation of ion channels). Both levels of neuroplastic mechanisms bring about changes of functional parameters of the synaptic transmission (changes in the duration or amplitude of the membrane potentials and resulting facilitation, posttetanic potentiation or changes of opposite character). Effects of plasticity can reside either in positive or negative changes during the development (evolutional plasticity), after a short-term exposition (reactive plasticity), after long-term or permanent stimuli (adaptational plasticity), and during functional or structural recovery of the damaged neuronal circuits (reparation plasticity). Manifestations of plasticity have probably the same basis, irrespectively of the cause which has triggered them, or the brain region where they have been accomplished. (Tab. 7, Ref. 45.)

摘要

可塑性是神经系统的一个特定特征,其特点是有两种基本现象:第一种“功能可塑性”发展相对较快,主要引起功能变化,且通常是可逆的。第二种具有适应性特征,影响基因型向表型的表达。神经可塑性机制由各种自然或人工刺激触发,这些刺激在数量上(它们产生于内部或外部环境)或质量上可能有所不同。神经可塑性机制基于突触信号传递的调节(例如,递质释放、突触后受体活性、突触后段传递效率变化)。它们可能与神经元间关系的变化有关(例如,某些类型突触的数量、神经元回路不同元件布线的意义)。由此产生的变化可能发生在神经元之间的通信(突触水平)、局部神经元回路的活动(局部回路水平)或各个功能性脑系统之间的关系(多模块水平)。神经可塑性可能基于形态学方法能够揭示的结构变化。这种可塑性形式在发育过程中或作为对损伤的反应(神经元的增殖和死亡、其突起和棘的形成、重塑或突触的形成)更为常见。更具体的方法已确定这些变化位于分子水平(酶活性、递质或调节剂的产生和释放、受体激活、离子通道调节)。神经可塑性机制的两个水平都会引起突触传递功能参数的变化(膜电位持续时间或幅度的变化以及由此产生的易化、强直后增强或相反性质的变化)。可塑性的影响可能存在于发育过程中的正向或负向变化(进化可塑性)、短期暴露后(反应性可塑性)、长期或永久性刺激后(适应性可塑性)以及受损神经元回路的功能或结构恢复期间(修复可塑性)。可塑性的表现可能具有相同的基础,无论触发它们的原因是什么,或它们在哪个脑区发生。(表7,参考文献45。)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验