Suppr超能文献

牛白血病病毒包装信号由RNA二级结构组成。

The bovine leukemia virus encapsidation signal is composed of RNA secondary structures.

作者信息

Mansky L M, Wisniewski R M

机构信息

Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.

出版信息

J Virol. 1998 Apr;72(4):3196-204. doi: 10.1128/JVI.72.4.3196-3204.1998.

Abstract

The encapsidation signal of bovine leukemia virus (BLV) was previously shown by deletion analysis to be discontinuous and to extend into the 5' end of the gag gene (L. Mansky et al., J. Virol. 69:3282-3289, 1995). The global minimum-energy optimal folding for the entire BLV RNA, including the previously mapped primary and secondary encapsidation signal regions, was analyzed. Two stable stem-loop structures (located just downstream of the gag start codon) were predicted within the primary signal region, and one stable stem-loop structure (in the gag gene) was predicted in the secondary signal region. Based on these predicted structures, we introduced a series of mutations into the primary and secondary encapsidation signals in order to explore the sequence and structural information contained within these regions. The replication efficiency and levels of cytoplasmic and virion RNA were analyzed for these mutants. Mutations that disrupted either or both of the predicted stem-loop structures of the primary signal reduced the replication efficiency by factors of 7 and 40, respectively; similar reductions in RNA encapsidation efficiency were observed. The mutant with both stem-loop structures disrupted had a phenotype similar to that of a mutant containing a deletion of the entire primary signal region. Mutations that disrupted the predicted stem-loop structure of the secondary signal led to similar reductions (factors of 4 to 6) in both the replication and RNA encapsidation efficiencies. The introduction of compensatory mutations into mutants from both the primary and secondary signal regions, which restored the predicted stem-loop structures, led to levels of replication and RNA encapsidation comparable to those of virus containing the wild-type encapsidation signal. Replacement of the BLV RNA region containing the primary and secondary encapsidation signals with a similar region from human T-cell leukemia virus (HTLV) type 1 or type 2 led to virus replication at three-quarters or one-fifth of the level of the parental virus, respectively. The results from both the compensatory mutants and BLV-HTLV chimeras indicate that the encapsidation sequences are recognized largely by their secondary or tertiary structures.

摘要

牛白血病病毒(BLV)的包装信号先前通过缺失分析表明是不连续的,并延伸至gag基因的5'端(L. Mansky等人,《病毒学杂志》69:3282 - 3289,1995年)。分析了包括先前定位的主要和次要包装信号区域在内的整个BLV RNA的全局最小能量最优折叠。在主要信号区域内预测到两个稳定的茎环结构(位于gag起始密码子下游),在次要信号区域预测到一个稳定的茎环结构(在gag基因中)。基于这些预测结构,我们在主要和次要包装信号中引入了一系列突变,以探索这些区域中包含的序列和结构信息。分析了这些突变体的复制效率以及细胞质和病毒粒子RNA的水平。破坏主要信号的预测茎环结构之一或两者的突变分别使复制效率降低了7倍和40倍;观察到RNA包装效率有类似降低。两个茎环结构都被破坏的突变体的表型类似于包含整个主要信号区域缺失的突变体。破坏次要信号的预测茎环结构的突变导致复制和RNA包装效率都有类似程度的降低(4至6倍)。在来自主要和次要信号区域的突变体中引入补偿性突变以恢复预测的茎环结构,导致复制和RNA包装水平与含有野生型包装信号的病毒相当。用人T细胞白血病病毒(HTLV)1型或2型的类似区域替换包含主要和次要包装信号的BLV RNA区域,分别导致病毒复制水平为亲本病毒的四分之三或五分之一。补偿性突变体和BLV - HTLV嵌合体的结果均表明,包装序列在很大程度上是通过其二级或三级结构被识别的。

相似文献

1
The bovine leukemia virus encapsidation signal is composed of RNA secondary structures.
J Virol. 1998 Apr;72(4):3196-204. doi: 10.1128/JVI.72.4.3196-3204.1998.
6
10
Mapping the encapsidation determinants of feline immunodeficiency virus.
J Virol. 2002 Dec;76(23):11889-903. doi: 10.1128/jvi.76.23.11889-11903.2002.

引用本文的文献

2
Human T-cell leukemia virus type 1 Gag domains have distinct RNA-binding specificities with implications for RNA packaging and dimerization.
J Biol Chem. 2018 Oct 19;293(42):16261-16276. doi: 10.1074/jbc.RA118.005531. Epub 2018 Sep 14.
3
HIV-1 Sequence Necessary and Sufficient to Package Non-viral RNAs into HIV-1 Particles.
J Mol Biol. 2017 Aug 4;429(16):2542-2555. doi: 10.1016/j.jmb.2017.06.018. Epub 2017 Jun 30.
4
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences.
Viruses. 2016 Oct 11;8(10):276. doi: 10.3390/v8100276.
5
The roles of lipids and nucleic acids in HIV-1 assembly.
Front Microbiol. 2014 May 28;5:253. doi: 10.3389/fmicb.2014.00253. eCollection 2014.
8
Identification of a high affinity nucleocapsid protein binding element from the bovine leukemia virus genome.
Virus Res. 2013 Feb;171(2):278-86. doi: 10.1016/j.virusres.2012.07.020. Epub 2012 Jul 27.
9
Biochemical characterization of a structure-specific resolving enzyme from Sulfolobus islandicus rod-shaped virus 2.
PLoS One. 2011;6(8):e23668. doi: 10.1371/journal.pone.0023668. Epub 2011 Aug 17.
10
Beyond plasma membrane targeting: role of the MA domain of Gag in retroviral genome encapsidation.
J Mol Biol. 2011 Jul 22;410(4):553-64. doi: 10.1016/j.jmb.2011.04.072.

本文引用的文献

3
Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA.
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393-7. doi: 10.1073/pnas.90.8.3393.
8
Lower mutation rate of bovine leukemia virus relative to that of spleen necrosis virus.
J Virol. 1994 Jan;68(1):494-9. doi: 10.1128/JVI.68.1.494-499.1994.
9
Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA.
J Virol. 1994 Jun;68(6):3784-93. doi: 10.1128/JVI.68.6.3784-3793.1994.
10
Retroviral RNA packaging: a review.
Arch Virol Suppl. 1994;9:513-22. doi: 10.1007/978-3-7091-9326-6_49.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验