Suppr超能文献

通过突变分析探索α型和β型I型干扰素之间的活性差异。

Differences in activity between alpha and beta type I interferons explored by mutational analysis.

作者信息

Runkel L, Pfeffer L, Lewerenz M, Monneron D, Yang C H, Murti A, Pellegrini S, Goelz S, Uzé G, Mogensen K

机构信息

Institut de Génétique Moléculaire, CNRS, F-34293 Montpellier, Cedex 5, France.

出版信息

J Biol Chem. 1998 Apr 3;273(14):8003-8. doi: 10.1074/jbc.273.14.8003.

Abstract

Type I interferon (IFN) subtypes alpha and beta share a common multicomponent, cell surface receptor and elicit a similar range of biological responses, including antiviral, antiproliferative, and immunomodulatory activities. However, alpha and beta IFNs exhibit key differences in several biological properties. For example, IFN-beta, but not IFN-alpha, induces the association of tyrosine-phosphorylated receptor components ifnar1 and ifnar2, and has activity in cells lacking the IFN receptor-associated, Janus kinase tyk2. To define the structural basis for these functional differences we produced human IFN-beta with point mutations and compared them to wild-type IFN-beta in assays that distinguish alpha and beta IFN subtypes. IFN-beta mutants with charged residues (N86K, N86E, or Y92D) introduced at two positions in the C helix lost the ability to induce the association of tyrosine-phosphorylated receptor chains and had reduced activity on tyk2-deficient cells. The combination of negatively charged residues N86E and Y92D (homologous with IFN-alpha8) increased the cross-species activity of the mutant IFN-betas on bovine cells to a level comparable to that of human IFN-alphas. In contrast, point mutations in the AB loop and D helix had no significant effect on these subtype-specific activities. A subset of these latter mutations did, however, reduce activity in a manner analogous to IFN-alpha mutations. The effects of these mutations on IFN-beta activity are discussed in the context of a family of related ligands acting through a common receptor and signaling pathway.

摘要

I型干扰素(IFN)的α和β亚型共享一个共同的多组分细胞表面受体,并引发一系列相似的生物学反应,包括抗病毒、抗增殖和免疫调节活性。然而,α和β干扰素在几种生物学特性上表现出关键差异。例如,IFN-β而非IFN-α可诱导酪氨酸磷酸化的受体组分ifnar1和ifnar2的结合,并且在缺乏与IFN受体相关的Janus激酶tyk2的细胞中具有活性。为了确定这些功能差异的结构基础,我们产生了具有点突变的人IFN-β,并在区分α和β IFN亚型的试验中将它们与野生型IFN-β进行比较。在C螺旋的两个位置引入带电荷残基(N86K、N86E或Y92D)的IFN-β突变体失去了诱导酪氨酸磷酸化受体链结合的能力,并且在tyk2缺陷细胞上的活性降低。带负电荷残基N86E和Y92D(与IFN-α8同源)的组合将突变型IFN-β对牛细胞的跨物种活性提高到与人类IFN-α相当的水平。相比之下,AB环和D螺旋中的点突变对这些亚型特异性活性没有显著影响。然而,后一组突变中的一部分确实以类似于IFN-α突变的方式降低了活性。在通过共同受体和信号通路起作用的相关配体家族的背景下讨论了这些突变对IFN-β活性的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验