Suppr超能文献

Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line.

作者信息

Prasad P D, Huang W, Wang H, Leibach F H, Ganapathy V

机构信息

Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta 30912, USA.

出版信息

Biochim Biophys Acta. 1998 Feb 2;1369(1):141-51. doi: 10.1016/s0005-2736(97)00215-0.

Abstract

We investigated the transport pathways available for the uptake of vitamin C in the human placental choriocarcinoma cell line, JAR. These cells were found to possess the capacity to accumulate the vitamin when presented either in the oxidized form (dehydroascorbic acid) or in the reduced form (ascorbate). Dithiothreitol and 5,5'-dithiobis(2-nitrobenzoic acid) were used to maintain vitamin C as ascorbate and dehydroascorbic acid, respectively. The uptake of these two forms of vitamin C in JAR cells was found to occur by different mechanisms. The uptake of the dehydroascorbic acid was Na(+)-independent and was mediated by facilitative glucose transporters as evidenced from the inhibition of the uptake process by glucose. On the other hand, the uptake of ascorbate was Na(+)-dependent and was not sensitive to inhibition by glucose. Substitution of Na+ with other monovalent cations abolished the uptake of ascorbate completely. The uptake process was, however, not influenced by anions. Kinetic analysis indicated the presence of a single saturable transport system for ascorbate with a Michaelis-Menten constant of 22 +/- 1 microM. The dependence of the uptake rare of ascorbate on Na+ concentration exhibited sigmoidal kinetics, suggesting interaction of more than one Na+ ion with the transporter. The Hill coefficient for the Na+ interaction was 2, indicating that the Na(+)-dependent ascorbate transport is electrogenic. The Na(+)-dependent stimulation of ascorbate uptake was primarily due to an increase in the affinity of the transporter for ascorbate in the presence of Na+. It is concluded that the JAR placental trophoblast cell line expresses two different transport systems for vitamin C: one for the reduced form of the vitamin ascorbate; and the other for the oxidized form of the vitamin dehydroascorbic acid.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验