Suppr超能文献

神经网络辅助的肽设计:人工信号肽酶I切割位点的生物活性

Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites.

作者信息

Wrede P, Landt O, Klages S, Fatemi A, Hahn U, Schneider G

机构信息

Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Institut für Medizinische/Technische Physik und Lasermedizin, AG Molekulare Bioinformatik, Germany.

出版信息

Biochemistry. 1998 Mar 17;37(11):3588-93. doi: 10.1021/bi9726032.

Abstract

De novo designed signal peptidase I cleavage sites were tested for their biological activity in vivo in an Escherichia coli expression and secretion system. The artificial cleavage site sequences were generated by two different computer-based design techniques, a simple statistical method, and a neural network approach. In previous experiments, a neural network was used for feature extraction from a set of known signal peptidase I cleavage sites and served as the fitness function in an evolutionary design cycle leading to idealized cleavage site sequences. The cleavage sites proposed by the two algorithms were active in vivo as predicted. There seems to be an interdependence between several cleavage site features for the constitution of sequences recognized by signal peptidase. It is concluded that neural networks are useful tools for sequence-oriented peptide design.

摘要

在大肠杆菌表达和分泌系统中对从头设计的信号肽酶I切割位点的体内生物学活性进行了测试。人工切割位点序列通过两种不同的基于计算机的设计技术、一种简单的统计方法和一种神经网络方法生成。在先前的实验中,神经网络用于从一组已知的信号肽酶I切割位点中提取特征,并在导致理想化切割位点序列的进化设计循环中用作适应度函数。两种算法提出的切割位点在体内如预测的那样具有活性。信号肽识别的序列构成中,几个切割位点特征之间似乎存在相互依存关系。得出的结论是,神经网络是面向序列的肽设计的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验