Suppr超能文献

电感觉系统中的可塑性。III. 空间分离的树突输入的对比特性。

Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.

作者信息

Bastian J

机构信息

Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.

出版信息

J Neurophysiol. 1998 Apr;79(4):1839-57. doi: 10.1152/jn.1998.79.4.1839.

Abstract

Efferent neurons of the first-order electrosensory processing center of the brain, the electrosensory lateral line lobe (ELL), receive electroreceptor afferent input as well as feedback inputs descending from higher centers. These ELL efferents, pyramidal cells, adaptively filter predictable patterns of sensory input while preserving sensitivity to novel stimuli. The filter mechanism involves integration of centrally generated predictive inputs with the afferent inputs being canceled. The predictive inputs, referred to as "negative image" inputs, terminate on pyramidal cell apical dendrites and generate responses that are opposite those resulting from the predictable afference, hence integration of these signals results in attenuation of pyramidal cell responses. The system also shows a robust form of plasticity; the pyramidal cells learn, with a time course of a few minutes, to cancel new patterns of repetitive inputs. This is accomplished by adjusting the strength of excitatory and inhibitory apical dendritic inputs according to an anti-Hebbian learning rule. This study focuses on the properties of two separate pathways that convey descending information to pyramidal cell apical dendrites. One pathway terminates proximally, nearer to the pyramidal cell body, whereas the other terminates distally. Recordings of ELL evoked potentials, extracellular pyramidal cell spike responses, and intracellularly recorded synaptic potentials show that the pyramidal cells respond oppositely to moderate-frequency (> approximately 8 Hz) single pulse stimulation or repeated (1/s) tetanic activation of these two pathways. Repetitive activation of the proximally terminating pathway results in highly facilitating responses due to potentiation of pyramidal cell excitatory postsynaptic potentials (EPSPs). These same stimuli applied to the distally terminating pathway result in a reduction of pyramidal cell responses due to depression of EPSPs and potentiation of inhibitatory postsynaptic potentials (IPSPs). Anti-Hebbian plasticity was demonstrated by pairing tetanic stimulation of either pathway with changes in the postsynaptic cell's membrane potential. After stabilization of the response potentiation due to tetanic stimulation of the proximally terminating pathway, paired postsynaptic hyperpolarization resulted in further increases in spike responses and additional potentiation of pyramidal cell EPSPs. Paired postsynaptic depolarization reduced subsequent responses to the tetanus, depressed EPSP amplitudes, and, in many cases, potentiated IPSPs. The same pattern of plasticity was observed when postsynaptic hyper- or depolarization was paired with tetanic stimulation of the distally terminating pathway except that the plasticity was superimposed on the depressed pyramidal cell responses resulting from stimulating this pathway alone. Modulation of a postsynaptic form of synaptic depression is proposed to account for the anti-Hebbian plasticity associated with both pathways.

摘要

大脑一级电感觉处理中心——电感觉侧线叶(ELL)的传出神经元,接收来自电感受器的传入输入以及来自高级中枢的下行反馈输入。这些ELL传出神经元,即锥体细胞,能在保留对新刺激敏感性的同时,自适应地过滤可预测的感觉输入模式。过滤机制涉及将中枢产生的预测性输入与被抵消的传入输入进行整合。这些预测性输入,被称为“负像”输入,终止于锥体细胞的顶端树突,并产生与可预测传入信号所引发的反应相反的反应,因此这些信号的整合会导致锥体细胞反应减弱。该系统还表现出一种强大的可塑性形式;锥体细胞能在几分钟的时间进程内学习抵消重复输入的新模式。这是通过根据反赫布学习规则调整兴奋性和抑制性顶端树突输入的强度来实现的。本研究聚焦于两条将下行信息传递至锥体细胞顶端树突的独立通路的特性。一条通路在近端终止,离锥体细胞体更近,而另一条通路在远端终止。ELL诱发电位、细胞外锥体细胞锋电位反应以及细胞内记录的突触电位的记录表明,锥体细胞对这两条通路的中频(>约8Hz)单脉冲刺激或重复(1次/秒)强直激活的反应相反。近端终止通路的重复激活由于锥体细胞兴奋性突触后电位(EPSP)的增强而导致高度易化反应。施加于远端终止通路的相同刺激由于EPSP的抑制和抑制性突触后电位(IPSP)的增强而导致锥体细胞反应减弱。通过将任一通路的强直刺激与突触后细胞膜电位的变化配对,证明了反赫布可塑性。在近端终止通路的强直刺激导致反应增强稳定后,配对的突触后超极化导致锋电位反应进一步增加以及锥体细胞EPSP的额外增强。配对的突触后去极化降低了随后对破伤风刺激的反应,降低了EPSP幅度,并且在许多情况下增强了IPSP。当突触后超极化或去极化与远端终止通路的强直刺激配对时,观察到相同的可塑性模式,只是这种可塑性叠加在单独刺激该通路所导致的锥体细胞反应减弱之上。有人提出对突触后形式的突触抑制进行调制,以解释与这两条通路相关的反赫布可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验