Robertson S C, Meyer A N, Hart K C, Galvin B D, Webster M K, Donoghue D J
Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA 92093-0367.
Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4567-72. doi: 10.1073/pnas.95.8.4567.
Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson-Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.
多种人类骨骼和颅缝早闭症,包括克鲁宗综合征、 Pfeiffer综合征、 Jackson-Weiss综合征和Apert综合征,是由成纤维细胞生长因子受体2(FGFR2)细胞外区域的大量点突变引起的。这些突变中的许多会产生一个游离的半胱氨酸残基,这可能导致异常的二硫键形成和受体激活;然而,对于非半胱氨酸突变,受体激活的机制仍不清楚。我们研究了其中两个突变W290G和T341P对受体二聚化和激活的影响。当作为FGFR2/Neu嵌合受体表达时,这些突变导致细胞转化。此外,在全长FGFR2中,这些突变诱导受体二聚化并提高酪氨酸激酶活性水平。有趣的是,如果W290G或T341P突变与消除第三个免疫球蛋白样结构域(Ig-3)中二硫键的突变一起表达,则嵌合受体的转化、二聚化和增强的激酶活性都将被消除。这些结果表明,非半胱氨酸突变激活FGFR2时需要Ig-3半胱氨酸残基。分子建模还显示,非半胱氨酸突变可能通过改变二硫键附近Ig-3结构域的构象来激活FGFR2,从而阻止分子内键的形成。这使得未结合的半胱氨酸残基能够参与分子间二硫键的形成,从而导致受体的组成性激活。