Sineshchekov V A, Ogorodnikova O B, Devlin P F, Whitelam G C
Biology Department, M.V. Lomonosov Moscow State University, Russia.
J Photochem Photobiol B. 1998 Feb;42(2):133-42. doi: 10.1016/s1011-1344(97)00133-4.
Phytochrome (P) was characterized in etiolated seedlings of wild-type, mutant and transgenic strains of Arabidopsis with the use of low-temperature (85 K) fluorescence spectroscopy and photochemistry. The position (lambda max) of the Pr emission spectrum, its intensity (F0) proportional to [P tot] and the extent of the Pr-->lumi-R phototransformation at 85 K (gamma 1) were shown to vary depending on the plant strains and tissues used, while the extent of the Pr-->Pfr transformation at 273 K (gamma 2) remained relatively constant. Depletion of phyA (fre1-1 in Nagatani et al., Plant Physiol. 102 (1993) 269-277, and fhy2-2 in Whitelam et al., Plant Cell 5 (1993) 757-768) resulted in a steep decrease of F0 to approximately equal to 10%. The phyB mutant (hy3-B064 in Reed et al., Plant Cell 5 (1993) 147-157) revealed a slight reduction (by approximately equal to 20%) of F0 while lambda max and gamma 1 remained practically unaffected. In phyAphyB mutuant no P emmission was observed. Overexpression of oat phyA (13k7 and 21k15 in Boylan and Quail, Proc. Natl. Acad. Sci. USA 88 (1991) 10806-10810) brought about an increase of F0 by two or three times, a shift of lambda max to 685 nm and an increase of gamma 1 to 0.3-0.4. On the contrary, an increase of F0 (up to 40%) in Arabidopsis and rice phyB overexpressors (ABO and RBO in Wagner et al., Plant Cell 3 (1991) 1275-1288) was followed by a decrease of gamma 1 values to 0.13-0.14. These data together with the results on phyB (lh) mutant of cucumber prove the existence of the two phyA populations with high (phyA') and low (phyA") photochemical activity at low temperatures. PhyB emits maximally in the same region as phyA in Arabidopsis (approximately equal to 683 nm) and at shorter wavelength (< 680 nm) in rice. It is characterized by low photochemical activity at 85 K (gamma 1 < or = 0.05) and can be attributed in this respect to the same pigment type as phyA".
利用低温(85K)荧光光谱法和光化学方法,对野生型、突变体和转基因拟南芥黄化幼苗中的光敏色素(P)进行了表征。结果表明,Pr发射光谱的位置(λmax)、与[P tot]成正比的强度(F0)以及85K时Pr→lumi - R光转化的程度(γ1)会因所用植物株系和组织的不同而有所变化,而273K时Pr→Pfr转化的程度(γ2)则相对保持恒定。phyA缺失(Nagatani等人,《植物生理学》102卷(1993年)269 - 277页中的fre1 - 1,以及Whitelam等人,《植物细胞》5卷(1993年)757 - 768页中的fhy2 - 2)导致F0急剧下降至约10%。phyB突变体(Reed等人,《植物细胞》5卷(1993年)147 - 157页中的hy3 - B064)显示F0略有降低(约20%),而λmax和γ1实际上未受影响。在phyAphyB突变体中未观察到P发射。燕麦phyA的过表达(Boylan和Quail,《美国国家科学院院刊》88卷(1991年)10806 - 10810页中的13k7和21k15)使F0增加了两到三倍,λmax移至685nm,γ1增加到0.3 - 0.4。相反,拟南芥和水稻phyB过表达体(Wagner等人,《植物细胞》3卷(1991年)1275 - 1288页中的ABO和RBO)中F0增加(高达40%)后,γ1值降至0.13 - 0.14。这些数据以及黄瓜phyB(lh)突变体的结果证明,在低温下存在具有高光化学活性(phyA')和低光化学活性(phyA")的两个phyA群体。在拟南芥中,phyB的最大发射区域与phyA相同(约683nm),而在水稻中则在较短波长(<680nm)处。其特征是在85K时具有低光化学活性(γ1≤0.05),在这方面可归因于与phyA"相同的色素类型。