Suppr超能文献

Reduced CO2-elimination during combined high-frequency ventilation compared to conventional pressure-controlled ventilation in surfactant-deficient piglets.

作者信息

Lichtwarck-Aschoff M, Zimmermann G J, Erhardt W

机构信息

Department of Anesthesiology and Surgical Intensive Care, Central Hospital Augsburg, FRG.

出版信息

Acta Anaesthesiol Scand. 1998 Mar;42(3):335-42. doi: 10.1111/j.1399-6576.1998.tb04926.x.

Abstract

BACKGROUND

Combined high-frequency ventilation (CHFV) combines a conventional low-frequency component with super-imposed high-frequency jet pulses. The intention is to overcome the limited CO2-elimination of high-frequency ventilation, and to decrease airway pressures and enhance hemodynamic performance by reducing the conventional component. The present study was performed to compare the effects of conventional continuous positive-pressure ventilation (CPPV) on gas exchange, airway pressures and cardiac output to those of CHFV at matched minute volume (MV) and mean airway pressure (MPAW).

METHODS

Sixteen anaesthetised piglets with lavage-induced surfactant deficiency were ventilated with CPPV, with positive end-expiratory pressure (PEEP) set to obliterate the lower inflection point of the inspiratory pressure-volume loop. This setting was compared to CHFV during which 50% of the total MV was applied as superimposed jet pulses of 20 Hz at otherwise unchanged settings, and to CPPV at a PEEP level which was reduced (CPPVred) until MPAW matched MPAW during CHFV. Gas exchange, airway pressures and hemodynamics were measured after the ventilatory setting had been applied for 20 min.

RESULTS

MPAW decreased from (median) 2.7 kPa with CPPV to 2.4 kPa with CHFV (P < or = 0.05). Peak inspiratory pressure was 3.6 kPa with CPPV, 3.2 kPa with CHFV, and 3.2 kPa with CPPVred (P < or = 0.05 for differences to CPPV), respectively. PaCO2 was comparable during CPPV (5.9 kPa), CPPVred and CHFVCO2, while it increased during CHFV (6.8 kPa, (P < or = 0.05)). Cardiac output did not differ significantly between the settings.

CONCLUSION

In the porcine lavage model, CO2-elimination is reduced during CHFV compared to CPPV at matched minute volume. At matched mean airway pressure, CHFV fails to reduce peak inspiratory airway pressure and to improve hemodynamic performance compared to CPPV.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验