Parkash J, Robblee J H, Agnew J, Gibbs E, Collings P, Pasternack R F, de Paula J C
Department of Chemistry, Haverford College, Pennsylvania 19041, USA.
Biophys J. 1998 Apr;74(4):2089-99. doi: 10.1016/S0006-3495(98)77916-0.
A quantum mechanical model is developed for the observed resonance enhancement of light scattering by aggregates of electronically interacting chromophores. Aggregate size, monomer oscillator strength, extent of electronic coupling, and aggregate geometry are all important determinants of intensity in resonance light scattering (RLS) spectra. The theory also predicts the value of the depolarization ratio (rho(v)(90)) of RLS for a given aggregate geometry. These results are used to interpret the RLS depolarization ratios of four aggregates: tetrakis(4-sulfonatophenyl)porphine aggregated at low pH (rho(v)(90) = 0.17 at 488 nm), trans-bis(N-methylpyridinium-4-yl)-diphenylporphinato copper(II) aggregated in 0.2 M NaCl solution (rho(v)(90) = 0.13 at 450 nm) and on calf thymus DNA (rho(v)(90) = 0.20 at 454 nm), and chlorophyll a aggregates in formamide/water (rho(v)(90) = 0.23 and 0.32 at 469 and 699 nm, respectively). The analysis is consistent with a J-aggregate geometry for all four systems. Furthermore, the specific values of rho(v)(90) allow us to estimate the orientation of the monomer transition dipoles with respect to the long axis of the aggregate. We conclude that depolarized resonance light scattering spectroscopy is a powerful probe of the geometric and electronic structures of extended aggregates of strong chromophores.
针对由电子相互作用发色团聚集体所观察到的光散射共振增强现象,开发了一种量子力学模型。聚集体大小、单体振子强度、电子耦合程度以及聚集体几何形状都是共振光散射(RLS)光谱中强度的重要决定因素。该理论还预测了给定聚集体几何形状下RLS的去极化率(rho(v)(90))值。这些结果被用于解释四种聚集体的RLS去极化率:在低pH值下聚集的四(4 - 磺酸苯基)卟啉(在488nm处rho(v)(90) = 0.17)、在0.2M NaCl溶液中聚集的反式 - 双(N - 甲基吡啶 - 4 - 基) - 二苯基卟啉铜(II)(在450nm处rho(v)(90) = 0.13)以及在小牛胸腺DNA上聚集的该物质(在454nm处rho(v)(90) = 0.20),还有在甲酰胺/水中聚集的叶绿素a(在469和699nm处rho(v)(90)分别为0.23和0.32)。分析结果与所有这四个体系的J - 聚集体几何形状一致。此外,rho(v)(90)的具体值使我们能够估计单体跃迁偶极相对于聚集体长轴的取向。我们得出结论,去极化共振光散射光谱是探测强发色团扩展聚集体的几何和电子结构的有力手段。