Dekker J, Kanellopoulos P N, van Oosterhout J A, Stier G, Tucker P A, van der Vliet P C
Laboratory for Physiological Chemistry, Utrecht University, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
J Mol Biol. 1998 Apr 10;277(4):825-38. doi: 10.1006/jmbi.1998.1652.
The adenovirus DNA binding protein (DBP) binds cooperatively to single-stranded (ss) DNA and stimulates both initiation and elongation of DNA replication. DBP forms protein filaments via a C-terminal arm that hooks into a neighbouring molecule. This multimerization is the driving force for ATP-independent DNA unwinding by DBP during elongation. Another conserved part of DBP forms an unstructured flexible loop that is probably directly involved in contacting DNA. By making appropriate deletion mutants that do not distort the overall DBP structure, the influence of the C-terminal arm and the flexible loop on the kinetics of ssDNA binding and on DNA replication was studied. Employing surface plasmon resonance we show that both parts of the protein are required for high affinity binding. Deletion of the C-terminal arm leads to an extremely labile DBP-ssDNA complex indicating the importance of multimerization. The flexible loop is also required for optimal stability of the DBP-ssDNA complex, providing additional evidence that this region forms part of the ssDNA-binding surface of DBP. Both deletion mutants are still able to stimulate initiation of DNA replication but are defective in supporting elongation, which may be caused by the fact that both mutants have a reduced DNA unwinding activity. Surprisingly, mixtures containing both mutants do stimulate elongation. Mixing the purified mutant proteins leads to the formation of mixed filaments that have a higher affinity for ssDNA than homogeneous mutant filaments. These results provide evidence that the C-terminal arm and the flexible loop have distinct functions in unwinding during replication. We propose the following model for ATP-independent DNA unwinding by DBP. Multimerization via the C-terminal arm is required for the formation of a protein filament that saturates the displaced strand. A high affinity of a DBP monomer for ssDNA and subsequent local destabilization of the replication fork requires the flexible loop.
腺病毒DNA结合蛋白(DBP)可协同结合单链(ss)DNA,并刺激DNA复制的起始和延伸。DBP通过一个C末端臂形成蛋白丝,该臂钩入相邻分子。这种多聚化是DBP在延伸过程中进行不依赖ATP的DNA解旋的驱动力。DBP的另一个保守部分形成一个无结构的柔性环,可能直接参与与DNA的接触。通过构建不扭曲整体DBP结构的适当缺失突变体,研究了C末端臂和柔性环对ssDNA结合动力学和DNA复制的影响。利用表面等离子体共振,我们表明蛋白质的这两个部分对于高亲和力结合都是必需的。C末端臂的缺失导致DBP-ssDNA复合物极其不稳定,表明多聚化的重要性。柔性环对于DBP-ssDNA复合物的最佳稳定性也是必需的,这进一步证明该区域构成了DBP的ssDNA结合表面的一部分。两个缺失突变体仍然能够刺激DNA复制的起始,但在支持延伸方面存在缺陷,这可能是由于两个突变体都具有降低的DNA解旋活性。令人惊讶的是,含有这两种突变体的混合物确实能刺激延伸。混合纯化的突变蛋白会导致形成对ssDNA具有比同源突变丝更高亲和力的混合丝。这些结果提供了证据,表明C末端臂和柔性环在复制过程中的解旋中具有不同的功能。我们提出了以下关于DBP进行不依赖ATP的DNA解旋的模型。通过C末端臂进行多聚化是形成使被置换链饱和的蛋白丝所必需的。DBP单体对ssDNA的高亲和力以及随后复制叉的局部不稳定需要柔性环。