Berens C, Streicher B, Schroeder R, Hillen W
Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Universität Erlangen-Nürnberg, Germany.
Chem Biol. 1998 Mar;5(3):163-75. doi: 10.1016/s1074-5521(98)90061-8.
Most catalytic RNAs depend on divalent metal ions for folding and catalysis. A thorough structure-function analysis of catalytic RNA therefore requires the identification of the metal-ion-binding sites. Here, we probed the binding sites using Fenton chemistry, which makes use of the ability of Fe2+ to functionally or structurally replace Mg2+ at ion-binding sites and to generate short-lived and highly reactive hydroxyl radicals that can cleave nucleic acid and protein backbones in spatial proximity of these ion-binding sites.
Incubation of group I intron RNA with Fe2+, sodium ascorbate and hydrogen peroxide yields distinctly cleaved regions that occur only in the correctly folded RNA in the presence of Mg2+ and can be competed by additional Mg2+, suggesting that Fe2+ and Mg2+ interact with the same sites. Cleaved regions in the catalytic core are conserved for three different group I introns, and there is good correlation between metal-ion-binding sites determined using our method and those determined using other techniques. In a model of the T4 phage-derived td intron, cleaved regions separated in the secondary structure come together in three-dimensional space to form several metal-ion-binding pockets.
In contrast to structural probing with Fe2+/EDTA, cleavage with Fe2+ detects metal-ion-binding sites located primarily in the inside of the RNA. Essentially all metal-ion-binding pockets detected are formed by tertiary structure elements. Using this method, we confirmed proposed metal-ion-binding sites and identified new ones in group I intron RNAs. This approach should allow the localization of metal-ion-binding sites in RNAs of interest.
大多数催化性RNA的折叠和催化依赖于二价金属离子。因此,对催化性RNA进行全面的结构-功能分析需要识别金属离子结合位点。在这里,我们使用芬顿化学法探测结合位点,该方法利用Fe2+在离子结合位点功能上或结构上取代Mg2+的能力,并产生能在这些离子结合位点空间邻近区域切割核酸和蛋白质主链的短寿命且高反应性的羟基自由基。
将I组内含子RNA与Fe2+、抗坏血酸钠和过氧化氢一起温育会产生明显的切割区域,这些区域仅在有Mg2+存在时出现在正确折叠的RNA中,并且可被额外的Mg2+竞争,这表明Fe2+和Mg2+与相同的位点相互作用。催化核心中的切割区域在三种不同的I组内含子中是保守的,并且使用我们的方法确定的金属离子结合位点与使用其他技术确定的位点之间有良好的相关性。在T4噬菌体衍生的td内含子模型中,二级结构中分开的切割区域在三维空间中聚集在一起形成几个金属离子结合口袋。
与用Fe2+/EDTA进行结构探测不同,用Fe2+切割可检测到主要位于RNA内部的金属离子结合位点。基本上所有检测到的金属离子结合口袋都是由三级结构元件形成的。使用这种方法,我们证实了I组内含子RNA中已提出的金属离子结合位点并鉴定出了新的位点。这种方法应该能够定位感兴趣的RNA中的金属离子结合位点。