Brusic V, Rudy G, Honeyman G, Hammer J, Harrison L
The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria, Australia.
Bioinformatics. 1998;14(2):121-30. doi: 10.1093/bioinformatics/14.2.121.
Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules.
Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification . This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binders were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotherapeutic peptides.
Software and data are available from the authors upon request.
用于识别结合肽的预测方法可以减少需要合成和检测的肽的数量,从而有助于潜在T细胞表位的识别。我们开发了一种生物信息学方法来预测肽与II类主要组织相容性复合体(MHC)分子的结合。
将实验结合数据以及锚定位置和结合基序的专业知识与进化算法(EA)和人工神经网络(ANN)相结合:结合数据提取→肽比对→ANN训练和分类。这种称为PERUN的方法被用于预测与HLA-DR4(B1*0401)结合的肽。通过交叉验证,PERUN对高亲和力、中等亲和力、低亲和力和零亲和力结合肽预测的各自阳性预测值分别为0.8、0.7、0.5和0.8,通过实验结合得到的相应值为1.0、0.8、0.3和0.7。这说明了实验与计算机建模之间的协同作用及其在潜在免疫治疗肽识别中的应用。
可根据请求向作者索取软件和数据。