Selifonov S A, Chapman P J, Akkerman S B, Gurst J E, Bortiatynski J M, Nanny M A, Hatcher P G
Department of Biochemistry, University of Minnesota, Gortner Laboratory, St. Paul 55108, USA.
Appl Environ Microbiol. 1998 Apr;64(4):1447-53. doi: 10.1128/AEM.64.4.1447-1453.1998.
[1-13C]acenaphthene, a tracer compound with a nuclear magnetic resonance (NMR)-active nucleus at the C-1 position, has been employed in conjunction with a standard broad-band-decoupled 13C-NMR spectroscopy technique to study the biodegradation of acenaphthene by various bacterial cultures degrading aromatic hydrocarbons of creosote. Site-specific labeling at the benzylic position of acenaphthene allows 13C-NMR detection of chemical changes due to initial oxidations catalyzed by bacterial enzymes of aromatic hydrocarbon catabolism. Biodegradation of [1-13C]acenaphthene in the presence of naphthalene or creosote polycyclic aromatic compounds (PACs) was examined with an undefined mixed bacterial culture (established by enrichment on creosote PACs) and with isolates of individual naphthalene- and phenanthrene-degrading strains from this culture. From 13C-NMR spectra of extractable materials obtained in time course biodegradation experiments under optimized conditions, a number of signals were assigned to accumulated products such as 1-acenaphthenol, 1-acenaphthenone, acenaphthene-1,2-diol and naphthalene 1,8-dicarboxylic acid, formed by benzylic oxidation of acenaphthene and subsequent reactions. Limited degradation of acenaphthene could be attributed to its oxidation by naphthalene 1,2-dioxygenase or related dioxygenases, indicative of certain limitations of the undefined mixed culture with respect to acenaphthene catabolism. Coinoculation of the mixed culture with cells of acenaphthene-grown strain Pseudomonas sp. strain A2279 mitigated the accumulation of partial transformation products and resulted in more complete degradation of acenaphthene. This study demonstrates the value of the stable isotope labeling approach and its ability to reveal incomplete mineralization even when as little as 2 to 3% of the substrate is incompletely oxidized, yielding products of partial transformation. The approach outlined may prove useful in assessing bioremediation performance.
[1-¹³C]苊是一种在C-1位置带有核磁共振(NMR)活性核的示踪化合物,它已与标准宽带去耦¹³C-NMR光谱技术结合使用,以研究各种降解杂酚油芳烃的细菌培养物对苊的生物降解。苊在苄基位置的位点特异性标记使得能够通过¹³C-NMR检测由于芳烃分解代谢的细菌酶催化的初始氧化而引起的化学变化。在萘或杂酚油多环芳烃(PAC)存在的情况下,用未定义的混合细菌培养物(通过在杂酚油PAC上富集建立)以及从该培养物中分离出的单个萘和菲降解菌株来检测[1-¹³C]苊的生物降解。在优化条件下的时间进程生物降解实验中获得的可提取材料的¹³C-NMR光谱中,许多信号被归因于积累的产物,如1-苊醇、1-苊酮、苊-1,2-二醇和萘1,8-二羧酸,这些产物是由苊的苄基氧化及后续反应形成的。苊的有限降解可能归因于其被萘1,2-双加氧酶或相关双加氧酶氧化,这表明未定义的混合培养物在苊分解代谢方面存在某些局限性。将混合培养物与在苊上生长的菌株假单胞菌属菌株A2279的细胞共接种可减轻部分转化产物的积累,并导致苊更完全的降解。这项研究证明了稳定同位素标记方法的价值及其揭示不完全矿化的能力,即使当低至2%至3%的底物未完全氧化并产生部分转化产物时也是如此。所概述的方法可能被证明在评估生物修复性能方面是有用的。