Cann J R
Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver 80262, USA.
Electrophoresis. 1998 Feb;19(2):127-41. doi: 10.1002/elps.1150190202.
The theory of mass transport coupled to reversible macromolecular interactions under chemical kinetic control forms the basis for computer simulation of the electrophoretic mobility-shift behavior of protein-DNA complexes. Model systems include (i) specific binding of a univalent protein molecule to a single site on the DNA molecule; (ii) the putative cage effect; (iii) cooperative binding to multiple sites; (iv) formation of looped complexes of 1:1 and 2:1 stoichiometry; (v) noncooperative and cooperative, nonspecific binding modes; and (vi) binding of dimerizing transcriptional factors to response elements of target genes. Favorable comparison of simulated with experimental mobility-shift behavior indicates that the phenomenological mechanisms, whereby observed mobility-shift patterns are generated during electrophoresis, are embodied in the theory. These studies have provided guidelines for definitive interpretation of mobility-shift assays and for the design of experiments to develop a detailed understanding of the particular system under investigation.
在化学动力学控制下,质量传输与可逆大分子相互作用相耦合的理论构成了蛋白质 - DNA 复合物电泳迁移率变动行为计算机模拟的基础。模型系统包括:(i)单价蛋白质分子与 DNA 分子上单个位点的特异性结合;(ii)假定的笼效应;(iii)与多个位点的协同结合;(iv)形成化学计量比为 1:1 和 2:1 的环状复合物;(v)非协同和协同的非特异性结合模式;以及(vi)二聚化转录因子与靶基因响应元件的结合。模拟的迁移率变动行为与实验结果的良好比较表明,该理论体现了电泳过程中产生观察到的迁移率变动模式的现象学机制。这些研究为迁移率变动分析的确定性解释以及为深入了解所研究的特定系统而设计实验提供了指导方针。