Suppr超能文献

Differential regulation of oxidative and osmotic stress induced Syk activation by both autophosphorylation and SH2 domains.

作者信息

Qin S, Kurosaki T, Yamamura H

机构信息

Department of Biochemistry, Kobe University School of Medicine, Japan.

出版信息

Biochemistry. 1998 Apr 21;37(16):5481-6. doi: 10.1021/bi9729460.

Abstract

Syk, a nonreceptor protein-tyrosine kinase, is activated by both oxidative and osmotic stress and plays different roles in the transduction of stress signals. In this study, the regulation of oxidative and osmotic stress induced Syk activation was investigated utilizing Syk-negative DT40 cells, expressing various Syk mutants. Phosphorylation of Y518Y519 was demonstrated to be required for both oxidative and osmotic stress induced Syk activation. Syk activation by these two types of stress stimuli was a combination of both autophosphorylation and the activities of additional tyrosine kinases. Oxidative stress induced Syk tyrosine phosphorylation was almost completely attributed to autophosphorylation, whereas other tyrosine kinases were largely responsible for osmotic stress induced Syk tyrosine phosphorylation. Moreover, the Src homology 2 (SH2) domains of Syk differentially regulated Syk activation. Both mSH2(N) Syk and mSH2(C) Syk, in which the phosphotyrosine-dependent binding motif within the SH2 domains contained point mutations, showed a significantly higher activity than that observed in wild-type Syk, following osmotic stress treatment. In comparison, in response to oxidative stress, only mSH2(N) Syk demonstrated a stronger activation than wild-type Syk. Therefore, differential activation and regulation of Syk may give an insight into the distinctive functions of Syk in oxidative and osmotic stress signaling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验