Suppr超能文献

红外光谱学与人工神经网络在宫颈癌诊断中的应用

Infrared microspectroscopy and artificial neural networks in the diagnosis of cervical cancer.

作者信息

Romeo M, Burden F, Quinn M, Wood B, McNaughton D

机构信息

Department of Chemistry, Monash University, Clayton, Victoria, Australia.

出版信息

Cell Mol Biol (Noisy-le-grand). 1998 Feb;44(1):179-87.

PMID:9551649
Abstract

Infrared spectra of 88 normal and 32 abnormal (mild to severe dysplasia) cervical smear samples were used as a databank to investigate the usefulness of artificial neural networks (ANN) in the diagnosis of cervical smears. The spectra were first reduced, using principal component analysis (PCA), to seven wavenumber components that are the major contributors to the variance. A number of different ANN architectures were investigated that could differentiate between normal and abnormal cervical smears. Although the ANNs were trained to differentiate only normal from abnormal smears, the results using an independent test data set indicated that within the abnormal category mild dysplasia could be distinguished from severe dysplasia. The results using this restricted data set indicate that neural networks coupled to infrared microspectroscopy could provide an alternative automated means of screening for cervical cancer.

摘要

88份正常宫颈涂片样本和32份异常(轻度至重度发育异常)宫颈涂片样本的红外光谱被用作数据库,以研究人工神经网络(ANN)在宫颈涂片诊断中的实用性。首先使用主成分分析(PCA)将光谱简化为七个波数成分,这些成分是方差的主要贡献者。研究了许多不同的ANN架构,它们可以区分正常和异常宫颈涂片。尽管ANN仅被训练用于区分正常涂片和异常涂片,但使用独立测试数据集的结果表明,在异常类别中,轻度发育异常可以与重度发育异常区分开来。使用这个有限数据集的结果表明,与红外显微光谱相结合的神经网络可以提供一种替代的宫颈癌自动筛查方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验