Prehoda K E, Mooberry E S, Markley J L
Department of Biochemistry, University of Wisconsin-Madison 53706, USA.
Biochemistry. 1998 Apr 28;37(17):5785-90. doi: 10.1021/bi980384u.
One of the key pieces of information from pressure denaturation experiments is the standard volume change for unfolding (Delta V(o)). The pressure dependence of the volume change, the standard compressibility change (Delta K(o)T), is typically assumed to be zero in the analysis of these experiments. We show here that this assumption can be incorrect and that the neglect of compressibility differences can skew the interpretation of experimental results. Analysis of experimental, variable-pressure NMR data for bovine pancreatic ribonuclease A in 2H2O at pH 2.0 and 295 K yielded the following statistically significant, non-zero values: Delta K(o) T = 0.015 +/- 0.002 mL mol-1 bar-1, Delta V(o) = -21 +/- 2 mL mol-1, and Delta G(o) = 2.8 +/- 0.3 kcal mol-1. The experimental protein stability is in good agreement with one (Delta G(o) = 2.5 kcal mol-1) determined independently for the same protein by calorimetry at atmospheric pressure under equivalent conditions [Makhatadze, G. I., Clore, G. M., and Gronenborn, A. M. (1995) Nat. Struct. Biol. 2, 852-855]. The positive value for Delta K(o)T indicates that the denatured form of ribonuclease A is more compressible than the native form; this is explained in terms of an interplay between the intrinsic compressibility of the protein and solvation effects. When the same data were fitted to a model that assumes a zero compressibility change, the Delta G(o) value of 4. 0 +/- 0.1 kcal mol-1 returned by the model no longer agreed with the independent measurement, and the Delta V(o) returned by the model was a very different -59 +/- 1 mL mol-1. By contrast, it was not possible to carry out a similar thermodynamic analysis of fluorescence spectroscopic data for the denaturation of staphylococcal nuclease to yield well-defined values of Delta G(o), Delta V(o), and Delta K(o)T. This limitation was shown by evaluation of synthetic data to be intrinsic to spectroscopic data whose analysis requires fitting of the plateaus at either side of the transition. Because NMR data do not have this requirement, they can be analyzed more rigorously.
压力变性实验的关键信息之一是去折叠的标准体积变化(ΔVₒ)。在这些实验的分析中,通常假定体积变化的压力依赖性,即标准压缩率变化(ΔKₒT)为零。我们在此表明,这一假设可能是错误的,忽略压缩率差异会歪曲实验结果的解释。对2H₂O中pH 2.0和295K条件下牛胰核糖核酸酶A的变压核磁共振实验数据进行分析,得出以下具有统计学意义的非零值:ΔKₒT = 0.015 ± 0.002 mL·mol⁻¹·bar⁻¹,ΔVₒ = -21 ± 2 mL·mol⁻¹,以及ΔGₒ = 2.8 ± 0.3 kcal·mol⁻¹。实验测得的蛋白质稳定性与在等效条件下通过量热法独立测定的同一蛋白质的稳定性(ΔGₒ = 2.5 kcal·mol⁻¹)高度吻合[Makhatadze, G. I., Clore, G. M., and Gronenborn, A. M. (1995) Nat. Struct. Biol. 2, 852 - 855]。ΔKₒT的正值表明核糖核酸酶A的变性形式比天然形式更具可压缩性;这可以通过蛋白质的固有压缩性和溶剂化效应之间的相互作用来解释。当将相同数据拟合到假定压缩率变化为零的模型时,该模型返回的ΔGₒ值为4.0 ± 0.1 kcal·mol⁻¹,不再与独立测量值一致,并且该模型返回的ΔVₒ为非常不同的 -59 ± 1 mL·mol⁻¹。相比之下,对于葡萄球菌核酸酶变性的荧光光谱数据,无法进行类似的热力学分析以得出明确的ΔGₒ、ΔVₒ和ΔKₒT值。通过对合成数据的评估表明,这种局限性是光谱数据所固有的,其分析需要拟合转变两侧的平台期。由于核磁共振数据没有这个要求,所以可以更严格地进行分析。