Veselov A, Olesen K, Sienkiewicz A, Shapleigh J P, Scholes C P
Department of Chemistry, Center for Biophysics and Biochemistry, University at Albany, SUNY, New York 12222, USA.
Biochemistry. 1998 Apr 28;37(17):6095-105. doi: 10.1021/bi971604r.
Q-band ENDOR elucidated proton and nitrogen hyperfine features to provide spin density information at ligands of blue-green Type 1 and catalytic Type 2 copper centers in nitrite reductase. The blue-green Type 1 center of nitrite reductase has a redox, electron-transfer role, and compared to the blue center of plastocyanin, it has the following structural differences: a shortened Cu-Smet bond length, a longer Cu-Scys bond length, and altered ligand-copper-ligand bond angles (Adman, E. T., Godden, J. W., and Turley, S. (1995) J. Biol. Chem. 270, 27458-27474). The hyperfine couplings of the two Type 1 histidine (N delta) ligands showed a larger percentage difference from each other in electron spin density than previously reported for other blue Type 1 proteins, while the cysteine beta-proton hyperfine couplings, a measure of unpaired p pi spin density on the liganding cysteine sulfur, showed a smaller electron spin density. A mutation of the Type 1 center, M182T, having the copper-liganding Met182 transformed to Thr182, caused the center to revert to an optically "blue" center, raised its redox potential by approximately 100 mV, and led to the loss of activity (prior paper). Surprisingly, in M182T there was no change from native Type 1 copper either in the histidine or cysteine hyperfine couplings or in g values and Cu nuclear hyperfine couplings. The conclusion is that the optical and redox alterations due to changed Type 1 methionine ligation need not be concurrent with electron spin delocalization changes in the HOMO as reported from its essential cysteine and histidines. A detailed picture of the nitrogen couplings from the three histidine (N epsilon) ligands of the Type 2 center indicated a substantial ( approximately 200%) electronic hyperfine inequivalence of one of the histidine nitrogens from the other two within the Type 2 HOMO and thus provided evidence for electronic distortion of the Type 2 site. In the presence of the nitrite substrate, hyperfine couplings of all histidines diminished. We suggest that this nitrite-induced decreased covalency would correlate with an increased Type 2 redox potential to assist electron transfer to the Type 2 center. Dipole-coupled, angle-selected exchangeable proton features, observed over a range of g values, predicted a ligand-water proton distance of 2.80 A from copper, and these water protons were eliminated by nitrite. His287 is not a Type 2 ligand but is positioned to perturb an axial water or a nitrite of Type 2 copper. In the presence of nitrite the mutant H287E showed no evidence for the loss of water protons and no diminished ligand histidine covalency. H287E has vastly diminished activity (prior paper), and the ENDOR information is that NO2- does not bind to Type 2 copper of H287E. In summary, the electronic information from this study of native and suitably chosen mutants provided a test of the highest occupied molecular orbital (HOMO) wave function at Type 1 and Type 2 coppers and an intimate electronic insight into functional enzymatic properties.
Q波段电子核双共振(ENDOR)阐明了质子和氮的超精细特征,以提供亚硝酸还原酶中蓝绿色1型和催化2型铜中心配体处的自旋密度信息。亚硝酸还原酶的蓝绿色1型中心具有氧化还原、电子转移作用,与质体蓝素的蓝色中心相比,它具有以下结构差异:铜-甲硫氨酸键长度缩短、铜-半胱氨酸键长度延长以及配体-铜-配体键角改变(阿德曼,E.T.,戈登,J.W.,和特利,S.(1995年)《生物化学杂志》270,27458 - 27474)。两种1型组氨酸(Nδ)配体的超精细耦合在电子自旋密度上彼此之间的百分比差异比之前报道的其他蓝色1型蛋白质更大,而半胱氨酸β-质子超精细耦合,即配体半胱氨酸硫上未成对pπ自旋密度的一种度量,显示出较小的电子自旋密度。1型中心的一个突变,M182T,使与铜配位的甲硫氨酸182转变为苏氨酸182,导致该中心恢复为光学上的“蓝色”中心,其氧化还原电位升高约100毫伏,并导致活性丧失(前文)。令人惊讶的是,在M182T中,组氨酸或半胱氨酸的超精细耦合以及g值和铜核超精细耦合与天然1型铜均无变化。结论是,由于1型甲硫氨酸配位改变导致的光学和氧化还原变化不一定与从其必需的半胱氨酸和组氨酸报道的最高占据分子轨道(HOMO)中的电子自旋离域变化同时发生。来自2型中心的三个组氨酸(Nε)配体的氮耦合的详细情况表明,在2型HOMO中,其中一个组氨酸氮与其他两个组氨酸氮之间存在显著的(约200%)电子超精细不等价性,因此为2型位点的电子畸变提供了证据。在存在亚硝酸盐底物的情况下,所有组氨酸的超精细耦合都减小了。我们认为,这种亚硝酸盐诱导的共价性降低将与2型氧化还原电位的升高相关,以协助电子转移到2型中心。在一系列g值范围内观察到的偶极耦合、角度选择的可交换质子特征预测,配体-水质子与铜的距离为2.80埃,并且这些水质子被亚硝酸盐消除。组氨酸287不是2型配体,但它的位置会干扰2型铜的轴向水或亚硝酸盐。在存在亚硝酸盐的情况下,突变体H287E没有显示出水质子损失的证据,并且配体组氨酸的共价性也没有降低。H287E的活性大幅降低(前文),而ENDOR信息表明NO2-不与H287E的2型铜结合。总之,这项对天然和适当选择的突变体的研究中的电子信息对1型和2型铜处的最高占据分子轨道(HOMO)波函数进行了检验,并对酶的功能性质提供了深入的电子洞察。