de la Fuente I M, Martinez L, Aguirregabiria J M, Veguillas J
Department of Cell Biology and Morphological Sciences, School of Medicine, University of the Basque Country, Vizcaya, Spain.
Acta Biotheor. 1998 Mar;46(1):37-51. doi: 10.1023/a:1000899820111.
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.
双节律性、三节律性、硬激发以及具有混沌区域的准周期性。对于相空间中不同的初始函数,可能会观察到两种不同准周期运动的共存、具有稳定环面的稳定稳态的存在以及具有不同稳定区域(带环面的混沌、带爆发运动的混沌以及带不同周期区域的混沌)的奇怪吸引子的存在。对于控制参数值的单个范围,我们的系统可能会呈现不同的分岔图:在一种情况下,费根鲍姆通向混沌的路径与有限数量的连续周期分岔共存,在其他条件下,可能会观察到两条通向混沌的准周期性路径的共存。这些研究是在恒定输入通量和强迫条件下获得的。