Suppr超能文献

ATP-induced Ca2+ signals in bronchial epithelial cells.

作者信息

Sienaert I, Huyghe S, Parys J B, Malfait M, Kunzelmann K, De Smedt H, Verleden G M, Missiaen L

机构信息

Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.

出版信息

Pflugers Arch. 1998 Jun;436(1):40-8. doi: 10.1007/s004240050602.

Abstract

Ca2+-dependent Cl- secretion in the respiratory tract occurs physiologically or under pathophysiological conditions when inflammatory mediators are released. The mechanism of intracellular Ca2+ release was investigated in the immortalized bronchial epithelial cell line 16HBE14o-. Experiments on both intact and permeabilized cells revealed that only inositol 1,4,5-trisphosphate (InsP3) receptors and not ryanodine receptors are involved in intracellular Ca2+ release. The expression pattern of the three InsP3 receptor isoforms was assessed both at the mRNA and at the protein level. The level of expression at the mRNA level was type 3 (92.5%) >> type 2 (5.4%) > type 1 (2.1%) and this rank order was also observed at the protein level. The ATP-induced Ca2+ signals in the intact cell, consisting of abortive Ca2+ spikes or fully developed [Ca2+] rises and intracellular Ca2+ waves, were indicative of positive feedback of Ca2+ on the InsP3 receptors. Low Ca2+ concentrations stimulated and high Ca2+ concentrations inhibited InsP3-induced Ca2+ release in permeabilized 16HBE14o- cells. We localized a cytosolic Ca2+-binding site between amino acid residues 2077 and 2101 in the type-2 InsP3 receptor and between amino acids 2030 and 2050 in the type-3 InsP3 receptor by expressing the respective parts of these receptors as glutathione S-transferase fusion proteins in bacteria. We conclude that the InsP3 receptor isoforms expressed in 16HBE14o- cells (mainly type-3 and type-2) are stimulated by Ca2+ and that this phenomenon contributes to the ATP-induced Ca2+ signals in intact 16HBE14o- cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验