Suppr超能文献

脊椎动物嗅觉受体细胞中的转导机制。

Transduction mechanisms in vertebrate olfactory receptor cells.

作者信息

Schild D, Restrepo D

机构信息

Physiologisches Institut, Universität Göttingen, Germany.

出版信息

Physiol Rev. 1998 Apr;78(2):429-66. doi: 10.1152/physrev.1998.78.2.429.

Abstract

Considerable progress has been made in the understanding of transduction mechanisms in olfactory receptor neurons (ORNs) over the last decade. Odorants pass through a mucus interface before binding to odorant receptors (ORs). The molecular structure of many ORs is now known. They belong to the large class of G protein-coupled receptors with seven transmembrane domains. Binding of an odorant to an OR triggers the activation of second messenger cascades. One second messenger pathway in particular has been extensively studied; the receptor activates, via the G protein Golf, an adenylyl cyclase, resulting in an increase in adenosine 3',5'-cyclic monophosphate (cAMP), which elicits opening of cation channels directly gated by cAMP. Under physiological conditions, Ca2+ has the highest permeability through this channel, and the increase in intracellular Ca2+ concentration activates a Cl- current which, owing to an elevated reversal potential for Cl-, depolarizes the olfactory neuron. The receptor potential finally leads to the generation of action potentials conveying the chemosensory information to the olfactory bulb. Although much less studied, other transduction pathways appear to exist, some of which seem to involve the odorant-induced formation of inositol polyphosphates as well as Ca2+ and/or inositol polyphosphate -activated cation channels. In addition, there is evidence for odorant-modulated K+ and Cl- conductances. Finally, in some species, ORNs can be inhibited by certain odorants. This paper presents a comprehensive review of the biophysical and electrophysiological evidence regarding the transduction processes as well as subsequent signal processing and spike generation in ORNs.

摘要

在过去十年中,我们对嗅觉受体神经元(ORN)的转导机制有了相当大的进展。气味分子在与气味受体(OR)结合之前会穿过黏液界面。现在已知许多OR的分子结构。它们属于具有七个跨膜结构域的G蛋白偶联受体大类。气味分子与OR的结合会触发第二信使级联反应的激活。特别是其中一条第二信使途径已得到广泛研究;该受体通过G蛋白Golf激活腺苷酸环化酶,导致3',5'-环磷酸腺苷(cAMP)增加,从而引发由cAMP直接门控的阳离子通道开放。在生理条件下,Ca2+通过该通道具有最高的通透性,细胞内Ca2+浓度的增加会激活Cl-电流,由于Cl-的反转电位升高,使嗅觉神经元去极化。受体电位最终导致动作电位的产生,将化学感觉信息传递到嗅球。尽管研究较少,但似乎存在其他转导途径,其中一些似乎涉及气味分子诱导的肌醇多磷酸的形成以及Ca2+和/或肌醇多磷酸激活的阳离子通道。此外,有证据表明存在气味分子调节的K+和Cl-电导。最后,在某些物种中,ORN可被某些气味分子抑制。本文全面综述了有关ORN中转导过程以及后续信号处理和动作电位产生的生物物理和电生理证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验