Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C
Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
Mol Cell Biol. 1998 May;18(5):2492-501. doi: 10.1128/MCB.18.5.2492.
Yeast cells are keenly sensitive to the availability and quality of nutrients. Addition of glucose to cells growing on a poorer carbon source elicits a cell cycle delay during G1 phase and a concomitant increase in the cell size. The signal is transduced through the RAS-cyclic AMP pathway. Using synchronized populations of G1 cells, we show that the increase in cell size required for budding depends upon CLN1 but not other G1 cyclins. This delay in cell cycle initiation is associated specifically with transcriptional repression of CLN1. CLN2 is not repressed. Repression of CLN1 is not limited to the first cycle following glucose addition but occurs in each cell cycle during growth on glucose. A 106-bp fragment of the CLN1 promoter containing the three MluI cell cycle box (MCB) core elements responsible for the majority of CLN1-associated upstream activation sequence activity is sufficient to confer glucose-induced repression on a heterologous reporter. A mutant CLN2 promoter that is rendered dependent upon its three MCB core elements due to inactivation of its Swi4-dependent cell cycle box (SCB) elements is also repressed by glucose. The response to glucose is partially suppressed by inactivation of SWI4, but not MBP1, which is consistent with the dependence of MCB core elements upon the SCB-binding transcription factor (SBF). We suggest that differential regulation of CLN1 and CLN2 by glucose results from differences in the capacity of SBF to activate transcription driven by SCB and MCB core elements. Finally, we show that transcriptional repression is sufficient to explain the cell cycle delay that occurs in response to glucose.
酵母细胞对营养物质的可利用性和质量极为敏感。向生长在较差碳源上的细胞添加葡萄糖会引发G1期细胞周期延迟,并伴随细胞大小增加。该信号通过RAS-环磷酸腺苷途径进行转导。利用G1期细胞的同步群体,我们发现出芽所需的细胞大小增加依赖于CLN1,而非其他G1期细胞周期蛋白。细胞周期起始的这种延迟与CLN1的转录抑制特异性相关。CLN2未被抑制。CLN1的抑制不仅限于添加葡萄糖后的第一个周期,而是在葡萄糖生长的每个细胞周期中都会发生。CLN1启动子的一个106bp片段,包含负责大部分与CLN1相关的上游激活序列活性的三个MluI细胞周期框(MCB)核心元件,足以赋予葡萄糖诱导的对异源报告基因的抑制作用。由于其依赖Swi4的细胞周期框(SCB)元件失活而使其依赖于三个MCB核心元件的突变CLN2启动子也受到葡萄糖的抑制。SWI4失活可部分抑制对葡萄糖的反应,但MBP1失活则不能,这与MCB核心元件对SCB结合转录因子(SBF)的依赖性一致。我们认为,葡萄糖对CLN1和CLN2的差异调节源于SBF激活由SCB和MCB核心元件驱动的转录的能力差异。最后,我们表明转录抑制足以解释响应葡萄糖时发生的细胞周期延迟。