Miller G P, Benkovic S J
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Biochemistry. 1998 May 5;37(18):6327-35. doi: 10.1021/bi972922t.
Analysis of the dihydrofolate reductase (DHFR) complex with folate by two-dimensional heteronuclear (1H-15N) nuclear magnetic relaxation revealed that isolated residues exhibit diverse backbone fluctuations on the nanosecond to picosecond time scale [Epstein, D. M., Benkovic, S. J., and Wright, P. E. (1995) Biochemistry 34, 11037-11048]. These dynamical features may be significant in forming the Michaelis complex. Of these residues, glycine 121 displays large-amplitude backbone motions on the nanosecond time scale. This amino acid, strictly conserved for prokaryotic DHFRs, is located at the center of the betaF-betaG loop. To investigate the catalytic importance of this residue, we report the effects of Gly121 deletion and glycine insertion into the modified betaF-betaG loop. Relative to wild type, deletion of Gly121 dramatically decreases the rate of hydride transfer 550-fold and the strength of cofactor binding 20-fold for NADPH and 7-fold for NADP+. Furthermore, DeltaG121 DHFR requires conformational changes dependent on the initial binary complex to attain the Michaelis complex poised for hydride transfer. Surprisingly, the insertion mutants displayed a significant decrease in both substrate and cofactor binding. The introduction of glycine into the modified betaF-betaG loop, however, generally eliminated conformational changes required by DeltaG121 DHFR to attain the Michaelis complex. Taken together, these results suggest that the catalytic role for the betaF-betaG loop includes formation of liganded complexes and proper orientation of substrate and cofactor. Through a transient interaction with the Met20 loop, alterations of the betaF-betaG loop can orchestrate proximal and distal effects on binding and catalysis that implicate a variety of enzyme conformations participating in the catalytic cycle.
通过二维异核(1H-15N)核磁共振弛豫分析二氢叶酸还原酶(DHFR)与叶酸的复合物,结果表明,在纳秒到皮秒的时间尺度上,孤立的残基呈现出多样的主链波动[爱泼斯坦,D.M.,本科维奇,S.J.,和赖特,P.E.(1995年)《生物化学》34卷,11037 - 11048页]。这些动力学特征在形成米氏复合物过程中可能具有重要意义。在这些残基中,甘氨酸121在纳秒时间尺度上表现出大幅度的主链运动。这种氨基酸在原核生物DHFR中严格保守,位于βF-βG环的中心。为了研究该残基的催化重要性,我们报告了在修饰的βF-βG环中缺失甘氨酸121以及插入甘氨酸的影响。相对于野生型,缺失甘氨酸121使氢化物转移速率急剧下降550倍,辅因子结合强度对于NADPH下降20倍,对于NADP +下降7倍。此外,ΔG121 DHFR需要依赖于初始二元复合物的构象变化才能达到准备好进行氢化物转移的米氏复合物。令人惊讶的是,插入突变体在底物和辅因子结合方面均显著下降。然而,在修饰的βF-βG环中引入甘氨酸通常消除了ΔG121 DHFR达到米氏复合物所需的构象变化。综上所述,这些结果表明βF-βG环的催化作用包括形成配体复合物以及使底物和辅因子正确定向。通过与Met20环的短暂相互作用,βF-βG环的改变可以协调对结合和催化的近端和远端效应,这意味着多种酶构象参与催化循环。