Miller G P, Benkovic S J
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Biochemistry. 1998 May 5;37(18):6336-42. doi: 10.1021/bi973065w.
On the basis of X-ray crystallographic data, Sawaya and Kraut proposed that Met20 loop conformational changes modulate ligand specificity observed in the catalytic cycle for Escherichia coli dihydrofolate reductase (DHFR) [Sawaya, M. R., and Kraut, J. (1997) Biochemistry 36, 586-603]. Interloop hydrogen bonds stabilize either a closed Met20 loop conformation observed in substrate complexes or an occluded Met20 loop conformation observed in product complexes, respectively. To test this model, we targeted a single hydrogen bond occurring exclusively in the closed Met20 loop conformation. Specifically, Asp122 in the betaF-betaG loop was independently substituted with asparagine, serine, and alanine-amino acids with decreasing abilities to hydrogen-bond. The kinetic analyses of the Asp122 mutants enabled the construction of kinetic schemes at pH 7.0 that demonstrate two striking features. First, a significant correlation exists between decreased binding of nicotinamide adenine dinucleotide phosphate, reduced (NADPH), and decreased hydride transfer rates resulting from these mutations. In other words, the interactions of Asp122 are along the reaction coordinate leading to the transition state. Second, substitutions for Asp122 alter the catalytic pathway preferred by wild-type DHFR under saturating conditions of substrate and cofactor. Overall, the steady-state rate contains contributions from the product off rates from the DHFR.5,6, 7,8-tetrahydrofolate (H4F) and DHFR.NADPH.H4F complexes and from the rate of hydride transfer. These mutational effects support the mechanistic model whereby interloop contacts regulate an equilibrium of Met20 loop conformations that, in turn, modulate ligand affinity and turnover.
基于X射线晶体学数据,萨瓦亚和克劳特提出,Met20环构象变化调节了在大肠杆菌二氢叶酸还原酶(DHFR)催化循环中观察到的配体特异性[萨瓦亚,M. R.,和克劳特,J.(1997年)《生物化学》36,586 - 603]。环间氢键分别稳定了在底物复合物中观察到的封闭Met20环构象或在产物复合物中观察到的封闭Met20环构象。为了验证该模型,我们针对仅在封闭Met20环构象中出现的单个氢键。具体而言,βF - βG环中的Asp122分别被天冬酰胺、丝氨酸和丙氨酸独立取代,这些氨基酸形成氢键的能力逐渐降低。对Asp122突变体的动力学分析使得能够构建pH 7.0时的动力学方案,该方案展现出两个显著特征。首先,烟酰胺腺嘌呤二核苷酸磷酸(还原型)(NADPH)结合减少以及这些突变导致的氢化物转移速率降低之间存在显著相关性。换句话说,Asp122的相互作用沿着反应坐标导致过渡态。其次,Asp122的取代改变了野生型DHFR在底物和辅因子饱和条件下偏好的催化途径。总体而言,稳态速率包含来自DHFR.5,6,7,8 - 四氢叶酸(H4F)和DHFR.NADPH.H4F复合物的产物解离速率以及氢化物转移速率的贡献。这些突变效应支持了一种机制模型,即环间接触调节Met20环构象的平衡,进而调节配体亲和力和周转率。