Renodon A, Boucher J L, Wu C, Gachhui R, Sari M A, Mansuy D, Stuehr D
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France.
Biochemistry. 1998 May 5;37(18):6367-74. doi: 10.1021/bi972297s.
Nitric oxide synthases (NOS) are heme proteins, closely related to cytochromes P450, that catalyze oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline. To get further insight into their active site, we have studied the ability of recombinant mouse inducible NOS (iNOS) and rat brain neuronal NOS (nNOS), and of their oxygenase domains (iNOSoxy and nNOSoxy), to form Fe(II)-nitrosoalkane complexes. In the absence of BH4, iNOSoxy, nNOSoxy, and full-length iNOS readily form complexes characterized by Soret peaks around 448 nm, after reaction with various nitroalkanes and sodium dithionite. These complexes displayed physicochemical characteristics very similar to those of previously reported microsomal cytochrome P450-Fe(II)-nitrosoalkane complexes: (i) a Soret peak around 450 nm, (ii) a clear stability in the presence of CO, and (iii) a fast destruction upon oxidation of the iron by ferricyanide. Thus, in the absence of l-Arg and BH4, NOSs Fe(II) appear to be largely opened to even large R-NO ligands with R = cyclohexyl or p-Cl-C6H4-CH2CH(CH3) for instance, in a manner similar to microsomal P450s Fe(II). As expected, the presence of l-Arg inhibits the formation of NOSs Fe(II)-RNO complexes. More surprisingly, the presence of BH4 also strongly inhibits the formation of the NOSs Fe(II) complexes even with the smallest nitrosoalkane ligand, CH3NO (IC50 values of 0.5 and 4 microM for nNOSoxy and iNOSoxy, respectively). Accordingly, recombinant full-length nNOS containing BH4 and l-Arg is completely unable to form Fe(II)-nitrosoalkane complexes, even with CH3NO. These results suggest that, in the absence of l-Arg and BH4, the distal pocket of NOSs Fe(II) is largely opened even to bulky ligands, in a manner similar to that of microsomal cytochromes P450. On the contrary, the distal heme pocket of iNOS and nNOS seems to be closed after binding of l-Arg and BH4, particularly in the Fe(II) state. This results in a highly restricted access for Fe(II) ligands, except very small ones such as CO, NO, and O2. Such effects of BH4 in controlling the size of the distal heme pocket of NOS Fe(II) correspond to a new role of biopterins in biological systems.
一氧化氮合酶(NOS)是血红素蛋白,与细胞色素P450密切相关,可催化L-精氨酸(L-Arg)氧化为一氧化氮(NO)和瓜氨酸。为了更深入了解它们的活性位点,我们研究了重组小鼠诱导型NOS(iNOS)和大鼠脑神经元NOS(nNOS)及其加氧酶结构域(iNOSoxy和nNOSoxy)形成Fe(II)-亚硝基烷络合物的能力。在没有四氢生物蝶呤(BH4)的情况下,iNOSoxy、nNOSoxy和全长iNOS与各种亚硝基烷和连二亚硫酸钠反应后,很容易形成以448nm左右的Soret峰为特征的络合物。这些络合物的物理化学特性与先前报道的微粒体细胞色素P450-Fe(II)-亚硝基烷络合物非常相似:(i)450nm左右的Soret峰;(ii)在CO存在下具有明显的稳定性;(iii)铁被铁氰化物氧化后迅速分解。因此,在没有L-Arg和BH4的情况下,NOS的Fe(II)似乎对甚至很大的R-NO配体(例如R =环己基或对氯苯甲基(CH2CH(CH3)))也很大程度上开放,其方式类似于微粒体P450的Fe(II)。正如预期的那样,L-Arg的存在会抑制NOS的Fe(II)-RNO络合物的形成。更令人惊讶的是,BH4的存在也强烈抑制NOS的Fe(II)络合物的形成,即使是与最小的亚硝基烷配体CH3NO反应(nNOSoxy和iNOSoxy的IC50值分别为0.5和4μM)。因此,含有BH4和L-Arg的重组全长nNOS完全无法形成Fe(II)-亚硝基烷络合物,即使与CH3NO反应也是如此。这些结果表明,在没有L-Arg和BH4的情况下,NOS的Fe(II)的远端口袋即使对庞大的配体也很大程度上开放,其方式类似于微粒体细胞色素P450。相反,iNOS和nNOS的远端血红素口袋在结合L-Arg和BH4后似乎是封闭的,特别是在Fe(II)状态下。这导致Fe(II)配体的进入受到高度限制,除了非常小的配体如CO、NO和O2。BH4在控制NOS的Fe(II)远端血红素口袋大小方面的这种作用对应于生物蝶呤在生物系统中的一种新作用。