Berka Vladimir, Yeh Hui-Chun, Gao De, Kiran Farheen, Tsai Ah-Lim
Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA.
Biochemistry. 2004 Oct 19;43(41):13137-48. doi: 10.1021/bi049026j.
Tetrahydrobiopterin (BH(4)), not dihydrobiopterin or biopterin, is a critical element required for NO formation by nitric oxide synthase (NOS). To elucidate how BH(4) affects eNOS activity, we have investigated BH(4) redox functions in the endothelial NOS (eNOS). Redox-state changes of BH(4) in eNOS were examined by chemical quench/HPLC analysis during the autoinactivation of eNOS using oxyhemoglobin oxidation assay for NO formation at room temperature. Loss of NO formation activity linearly correlated with BH(4) oxidation, and was recovered by overnight incubation with fresh BH(4). Thus, thiol reagents commonly added to NOS enzyme preparations, such as dithiothreitol and beta-mercaptoethanol, probably preserve enzyme activity by preventing BH(4) oxidation. It has been shown that conversion of L-arginine to N-hydroxy-L-arginine in the first step of NOS catalysis requires two reducing equivalents. The first electron that reduces ferric to the ferrous heme is derived from flavin oxidation. The issue of whether BH(4) supplies the second reducing equivalent in the monooxygenation of eNOS was investigated by rapid-scan stopped-flow and rapid-freeze-quench EPR kinetic measurements. In the presence of L-arginine, oxygen binding kinetics to ferrous eNOS or to the ferrous eNOS oxygenase domain (eNOS(ox)) followed a sequential mechanism: Fe(II) <--> Fe(II)O(2) --> Fe(III) + O(2)(-). Without L-arginine, little accumulation of the Fe(II)O(2) intermediate occurred and essentially a direct optical transition from the Fe(II) form to the Fe(III) form was observed. Stabilization of the Fe(II)O(2) intermediate by L-arginine has been established convincingly. On the other hand, BH(4) did not have significant effects on the oxygen binding and decay of the oxyferrous intermediate of the eNOS or eNOS oxygenase domain. Rapid-freeze-quench EPR kinetic measurements in the presence of L-arginine showed a direct correlation between BH(4) radical formation and decay of the Fe(II)O(2) intermediate, indicating that BH(4) indeed supplies the second electron for L-arginine monooxygenation in eNOS.
四氢生物蝶呤(BH(4))而非二氢生物蝶呤或生物蝶呤,是一氧化氮合酶(NOS)生成一氧化氮(NO)所需的关键要素。为阐明BH(4)如何影响内皮型NOS(eNOS)的活性,我们研究了eNOS中BH(4)的氧化还原功能。在室温下使用氧合血红蛋白氧化法测定NO生成,通过化学淬灭/HPLC分析在eNOS自失活过程中检测eNOS中BH(4)的氧化还原状态变化。NO生成活性的丧失与BH(4)氧化呈线性相关,并通过与新鲜BH(4)过夜孵育得以恢复。因此,通常添加到NOS酶制剂中的硫醇试剂,如二硫苏糖醇和β-巯基乙醇,可能通过防止BH(4)氧化来保持酶活性。已表明在NOS催化的第一步中,L-精氨酸转化为N-羟基-L-精氨酸需要两个还原当量。将三价铁血红素还原为二价铁血红素的第一个电子来源于黄素氧化。通过快速扫描停流和快速冷冻淬灭EPR动力学测量研究了BH(4)是否为eNOS单加氧反应提供第二个还原当量的问题。在存在L-精氨酸的情况下,氧气与二价铁eNOS或二价铁eNOS加氧酶结构域(eNOS(ox))的结合动力学遵循顺序机制:Fe(II) <--> Fe(II)O(2) --> Fe(III) + O(2)(-)。在没有L-精氨酸的情况下,几乎没有Fe(II)O(2)中间体的积累,基本上观察到从Fe(II)形式到Fe(III)形式的直接光学转变。L-精氨酸对Fe(II)O(2)中间体的稳定作用已得到令人信服的证实。另一方面,BH(4)对eNOS或eNOS加氧酶结构域的氧合亚铁中间体的氧结合和衰减没有显著影响。在存在L-精氨酸的情况下进行的快速冷冻淬灭EPR动力学测量表明,BH(4)自由基的形成与Fe(II)O(2)中间体的衰减直接相关,表明BH(4)确实为eNOS中L-精氨酸单加氧反应提供第二个电子。