Suppr超能文献

Various pathogenetic factors revolving around the central role of protein kinase C activation in the occurrence of cerebral vasospasm.

作者信息

Asano T, Matsui T

机构信息

Department of Neurosurgery, Saitama Medical Center/School, 1981 Kamoda, Kawagoe, Saitama, 350 Japan

出版信息

Crit Rev Neurosurg. 1998 May 13;8(3):176-87. doi: 10.1007/s003290050075.

Abstract

Accumulating evidence indicates that protein kinase C (PKC)-dependent, Ca2+-independent smooth muscle contraction plays the central role in the occurrence of chronic vasospasm following aneurysmal subarachnoid hemorrhage. As far as we know, the nitric oxide/ cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) system comprises the most efficacious inhibitory mechanism against the PKC-dependent contractile mechanism, and the myogenic tonus of normal cerebral arteries is thought to be maintained on the balance between these systems. Recent studies indicate that in spastic cerebral arteries, the rise in the intracellular diacylglycerol level causes PKC activation presumably owing to the overexpression of endothelin (ET)-1 as well as the generation of free radicals, whereas the cGMP level is inversely reduced owing to the inactivation of soluble guanylate cyclase through some as yet unknown mechanism. The resultant loss of balance between the two systems is considered to culminate in the occurrence of chronic vasospasm lasting for nearly 2 weeks. Based on the above concept, recent papers concerning the effects of reactive oxygen species on the arterial smooth muscle, alterations of various membrane ion channels, particularly of adenosine triphospate (ATP)-activated potassium channels in spastic arteries, the preventive effects of ET antagonists on vasospasm, and the causative role of ET-1 were reviewed in the present article. The roles of the above spasmogenic factors or mechanisms may be more clearly understood on the basis of the antagonistic interrelation between the PKC and the PKG systems, which exert diverse influences on the force-generating system as well as on its multifarious regulatory mechanisms in smooth muscle cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验