Suppr超能文献

Role of NO in cyclosporin nephrotoxicity: effects of chronic NO inhibition and NO synthases gene expression.

作者信息

Bobadilla N A, Gamba G, Tapia E, García-Torres R, Bolio A, López-Zetina P, Herrera-Acosta J

机构信息

Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.

出版信息

Am J Physiol. 1998 Apr;274(4):F791-8. doi: 10.1152/ajprenal.1998.274.4.F791.

Abstract

The role of nitric oxide (NO) during cyclosporin renal vasoconstriction was evaluated by glomerular hemodynamic and histological changes produced by chronic NO synthesis inhibition and neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) NO syntheses mRNA expression in renal cortex and medulla. Uninephrectomized rats treated during 7 days with vehicle (Veh), cyclosporin A (CsA) 30 mg/kg, CsA + nitro-L-arginine methyl ester (L-NAME), and Veh + L-NAME (10 mg/dl) in the drinking water were studied. Increase in arterial pressure and afferent and efferent resistances, as well as decrease in glomerular plasma flow, ultrafiltration coefficient, and single-nephron glomerular filtration rate were significantly greater with CsA + L-NAME than with CsA alone. The increase in afferent resistance was higher with CsA + L-NAME than with Veh + L-NAME. In addition, glomerular thrombosis, proximal tubular vacuolization, and arteriolar thickening were more prominent. In renal cortex, eNOS mRNA expression exhibited a 2.7-fold increase in CsA, whereas, in medulla, nNOS and iNOs expression were lower in CsA than in Veh, while eNOS tended to increase. Our results support the hypothesis that NO synthesis is enhanced at cortical level during CsA nephrotoxicity, counterbalancing predominantly preglomerular vasoconstriction. Higher NO production could be the result of increased eNOS mRNA expression.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验