Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore A M, Mancuso C, Preziosi P, Cairo G
Department of Pharmacology, Catholic University School of Medicine, Rome, Italy.
FASEB J. 1998 May;12(7):541-52. doi: 10.1096/fasebj.12.7.541.
Anticancer therapy with doxorubicin (DOX) is limited by severe cardiotoxicity, presumably reflecting the intramyocardial formation of drug metabolites that alter cell constituents and functions. In a previous study, we showed that NADPH-supplemented cytosolic fractions from human myocardial samples can enzymatically reduce a carbonyl group in the side chain of DOX, yielding a secondary alcohol metabolite called doxorubicinol (DOXol). Here we demonstrate that DOXol delocalizes low molecular weight Fe(II) from the [4Fe-4S] cluster of cytoplasmic aconitase. Iron delocalization proceeds through the reoxidation of DOXol to DOX and liberates DOX-Fe(II) complexes as ultimate by-products. Under physiologic conditions, cluster disassembly abolishes aconitase activity and forms an apoprotein that binds to mRNAs, coordinately increasing the synthesis of transferrin receptor but decreasing that of ferritin. Aconitase is thus converted into an iron regulatory protein-1 (IRP-1) that causes iron uptake to prevail over sequestration, forming a pool of free iron that is used for metabolic functions. Conversely, cluster reassembly converts IRP-1 back to aconitase, providing a regulatory mechanism to decrease free iron when it exceeds metabolic requirements. In contrast to these physiologic mechanisms, DOXol-dependent iron release and cluster disassembly not only abolish aconitase activity, but also affect irreversibly the ability of the apoprotein to function as IRP-1 or to reincorporate iron within new Fe-S motifs. This damage is mediated by DOX-Fe(II) complexes and reflects oxidative modifications of -SH residues having the dual role to coordinate cluster assembly and facilitate interactions of IRP-1 with mRNAs. Collectively, these findings describe a novel mechanism of cardiotoxicity, suggesting that intramyocardial formation of DOXol may perturb the homeostatic processes associated with cluster assembly or disassembly and the reversible switch between aconitase and IRP-1. These results may also provide a guideline to design new drugs that mitigate the cardiotoxicity of DOX.
阿霉素(DOX)的抗癌治疗受到严重心脏毒性的限制,这可能反映了药物代谢产物在心肌内形成,从而改变细胞成分和功能。在先前的一项研究中,我们表明,来自人心脏样本的补充了NADPH的胞质部分可以通过酶促作用还原DOX侧链中的羰基,产生一种称为阿霉素醇(DOXol)的仲醇代谢产物。在此我们证明,DOXol使细胞质乌头酸酶[4Fe-4S]簇中的低分子量Fe(II)离域。铁离域通过DOXol重新氧化为DOX进行,并释放出DOX-Fe(II)复合物作为最终副产物。在生理条件下,簇的拆解会消除乌头酸酶的活性,并形成一种与mRNA结合的脱辅基蛋白,从而协同增加转铁蛋白受体的合成,但降低铁蛋白的合成。因此,乌头酸酶转变为铁调节蛋白1(IRP-1),导致铁摄取超过螯合作用,形成用于代谢功能的游离铁池。相反,簇的重新组装将IRP-1转变回乌头酸酶,提供了一种调节机制,当游离铁超过代谢需求时可减少游离铁。与这些生理机制相反,DOXol依赖性铁释放和簇拆解不仅会消除乌头酸酶的活性,还会不可逆地影响脱辅基蛋白作为IRP-1发挥功能或将铁重新整合到新的Fe-S基序中的能力。这种损伤由DOX-Fe(II)复合物介导,反映了-SH残基的氧化修饰,其具有协调簇组装和促进IRP-1与mRNA相互作用的双重作用。总的来说,这些发现描述了一种新的心脏毒性机制,表明心肌内DOXol的形成可能会扰乱与簇组装或拆解以及乌头酸酶和IRP-1之间可逆转换相关的稳态过程。这些结果也可能为设计减轻DOX心脏毒性的新药提供指导。