Suppr超能文献

Fructose and mannose metabolism in Aeromonas hydrophila: identification of transport systems and catabolic pathways.

作者信息

Binet Marie R B, Rager Marie-Noelle, Bouvet Odile M M

机构信息

Unité des Entérobactéries, Institut National de la Santé et de la Recherche U389, Institut Pasteur, 75724 Paris cedex 15, France.

Service de Résonance Magnétique Nucléaire, URA 403, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris cedex 05, France.

出版信息

Microbiology (Reading). 1998 Apr;144 ( Pt 4):1113-1121. doi: 10.1099/00221287-144-4-1113.

Abstract

Aeromonas hydrophila was examined for fructose and mannose transport systems. A. hydrophila was shown to possess a phosphoenolpyruvate (PEP): fructose phosphotransferase system (fructose-PTS) and a mannose-specific PTS, both induced by fructose and mannose. The mannose-PTS of A. hydrophila exhibited cross-reactivity with Escherichia coli mannose-PTS proteins. The fructose-PTS proteins exhibited cross-reactivities with E. coli and Xanthomonas campestris fructose-PTS proteins. In A. hydrophila grown on mannose as well as on fructose, the phosphorylated derivative accumulated from fructose was fructose 1-phosphate. Identification of fructose 1-phosphate was confirmed by 13C-NMR spectroscopy. 1-Phosphofructokinase (1-PFK), which converts the product of the PTS reaction to fructose 1,6-diphosphate, was present in A. hydrophila grown with fructose but not on mannose. An inducible phosphofructomutase (PFM) activity, an unusual enzyme converting fructose 1-phosphate to fructose 6-phosphate, was detected in extracts induced by mannose or fructose. These results suggest that in cells grown on fructose, fructose 1-phosphate could be converted to fructose 1,6-diphosphate either directly by the 1-PFK activity or via fructose 6-phosphate by the PFM and 6-phosphofructokinase activities. In cells grown on mannose, the degradation of fructose 1-phosphate via PFM and the Embden-Meyerhof pathway appeared to be a unique route.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验