Whyne C M, Hu S S, Klisch S, Lotz J C
Department of Orthopedic Surgery, University of California San Francisco, USA.
Spine (Phila Pa 1976). 1998 Apr 15;23(8):899-907. doi: 10.1097/00007632-199804150-00011.
A finite element study to predict the contribution of the pedicles and the posterior arch to vertebral body strength.
To determine the effect of the pedicle and posterior arch on strain distributions occurring within the vertebral body under axial compressive loading.
Posterior vertebral body fracture can arise from high-impact or normal loading in bones compromised by osteoporosis or neoplasm and can result in spinal canal encroachment. Anatomically, the pedicles and posterior arch have a potential role as a structural buttress to the posterior vertebral body wall. However, most finite element models used to investigate vertebral body strength have neglected these structures.
Three 3-dimensional finite element models were developed of L1, incorporating anatomic curvature, with varying degrees of posterior element inclusion (no pedicle, pedicle, and pedicle and posterior arch). Three cases were analyzed with each model: 25% dehydrated disc, normal healthy disc, and uniform pressure loading. Outcome variables were the maximum von Mises strains and the displacement of the posterior wall into the spinal canal.
Inclusion of the posterior arch resulted in substantial decreases in maximum strain and posterior wall displacement under all loading configurations using transversely isotropic trabecular bone properties. No changes in maximum strains or displacements were recorded in the pedicle model, compared with that observed in the no-pedicle baseline case.
The pedicle functions as a structural buttress, providing support to the posterior wall of the vertebral body when constrained through the posterior arch. To yield more accurate vertebral body strength predictions from finite element modeling, the posterior arch should be included.
一项有限元研究,旨在预测椎弓根和后弓对椎体强度的贡献。
确定在轴向压缩载荷下,椎弓根和后弓对椎体内应变分布的影响。
椎体后部骨折可由骨质疏松或肿瘤导致的骨质受损时的高冲击力或正常负荷引起,并可导致椎管受压。从解剖学角度来看,椎弓根和后弓可能作为椎体后壁的结构支撑。然而,大多数用于研究椎体强度的有限元模型都忽略了这些结构。
建立了三个包含L1解剖曲率的三维有限元模型,后弓结构的包含程度不同(无椎弓根、有椎弓根、有椎弓根和后弓)。每个模型分析三种情况:椎间盘脱水25%、正常健康椎间盘、均匀压力加载。结果变量为最大冯·米塞斯应变和后壁向椎管内的位移。
使用横观各向同性小梁骨特性时,在所有加载配置下,包含后弓均导致最大应变和后壁位移大幅降低。与无椎弓根的基线情况相比,椎弓根模型中的最大应变或位移没有变化。
当通过后弓受到约束时,椎弓根起到结构支撑的作用,为椎体后壁提供支撑。为了通过有限元建模得出更准确的椎体强度预测结果,应包含后弓。